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Levi-Civita connection

An affine connection on a smooth manifold Mn is a bilinear map
∇ : Γ(TM)× Γ(TM)→ Γ(TM) such that for all f ∈ C∞(Mn) and
X ,Y ∈ Γ(TM),

1 ∇fXY = f∇XY
2 ∇X (fY ) = X (f )Y + f∇XY

A Riemannian manifold is a smooth manifold Mn equipped with a
smooth inner product gp on TpMn for each p ∈ Mn. In local coordinates
we will write

g = gijdx i ⊗ dx j

where gij = g
(
∂
∂x i ,

∂
∂x j

)
.

For any Riemannian manifold (Mn, g) there exists a unique connection ∇,
called the Levi-Civita connection which satisfies the following

1 Xg(Y ,Z ) = g(∇XY ,Z ) + g(Y ,∇XZ )
2 ∇XY −∇YX = [X ,Y ]
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Hypersurfaces and Second Fundamental Form

Let Mn be a smooth n-dimensional manifold with a smooth immersion
X : Mn → Rn+1. We will denote the image X (Mn) byMn which is a
hypersurface when X is an embedding. We can induce a metric and a
connection(Levi-Civita) on Mn from the standard metric and connection on
Rn+1. If {x i} is a local coordinate system on Mn, then we can define it by

g
(
∂

∂x i ,
∂

∂x j

)
=
〈
dX

(
∂

∂x i

)
, dX

(
∂

∂x j

)〉
=
〈
∂X
∂x i ,

∂X
∂x j

〉
where 〈·, ·〉 is the standard metric on Rn+1, and

∇uv = (Du ṽ)T

where ṽ is an extension of v , D(·)(·) is the standard connection on Rn+1

and (W )T denotes the tangential component, i.e. (·)T : TRn+1 → TMn
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Hypersurfaces and Second Fundamental Form

Let ν denote a unit normal (i.e. ν ∈ T (Mn)⊥ and |ν| = 1). The second
fundamental form is a symmetric 2-tensor on Mn defined by

Aν(u, v) = 〈Du(ṽ), ν〉

where u, v ∈ Γ(TMn|U) are local vector fields and ṽ is an extension of v to
an open set of Rn+1. Using this, we define Weingarten map
L : TMn → TMn by

g(L(X ),Y ) = Aν(X ,Y )
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Hypersurfaces and Second Fundamental Form

As Aν is symmetric, the Weingarten map L is self-adjoint, so it can be
diagonalized and has real eigenvalues. The eigenvalues are denoted by
κ1, . . . , κn and are called principal curvatures. The trace of the map L is
called the mean curvature and is denoted by H,

H =
n∑

i=1
κi

One can also prove that the Weingarten map is equal to

L(u) = DuN

where N is some extension of ν satisfying |N| ≡ 1.
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Hypersurfaces and Second Fundamental Form

In local coordinates {x i}, we can write

Aν = hijdx i ⊗ dx j and L(∂i ) = Lj
i∂j

then

g(L(∂i ), ∂k) = Aν(∂i , ∂k) = hik

g(Lj
i∂i , ∂k) = hik

gjkLj
i = hik

Lj
i = g jkhik

where [g ij ] = [gij ]−1. In particular, H = g ijhij .
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Mean Curvature flow

MCF
A one-parameter family of immersion X : Mn × I → Rn+1 is said to evolve
by Mean Curvature Flow (MCF) if

∂

∂t X (p, t) = ~H(x , t) = −H(x , t)ν(x , t) ∀(p, t) ∈ Mn × I

Notice that the Mean Curvature vector ~H = −Hν is independent of the
direction of normal ν.

Let ∆Mt denote the Laplacian of the induced metric, then
∆MtX = (∆MtX1, . . . ,∆MtXn+1) = −Hν so MCF can be considered as
heat type equation,

∂

∂t X (p, t) = ∆MtX
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MCF as the negative gradient flow
LetM0 be a hypersurface in Rn+1 and consider a variation
X : Mn × (−ε, ε)→ Rn+1 with X0 =M0. Considering volume as function
of time, we get

d
dtVol(Mt) =

∫
Mt
〈∂tX ,Hν〉

Using this, the gradient of the volume functional is

∇Vol = Hν

so the most efficient way to reduce the volume is to choose the variation
so that

∂tX = −∇Vol = −Hν
which is MCF. In particular, we get the following equation for evolution of
volume under MCF,

d
dtVol(Mt) = −

∫
Mt

H2
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Short time existence

Short time existence : Let X0 : Mn → Rn+1 be a smooth immersion of a
closed manifold. There exists an ε > 0 and a smooth solution
X : Mn × [0, ε)→ Rn+1 to MCF, with X (·, 0) = X0. Moreover, the
solution is unique.
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Examples

1 Shrinking spheres : Mt = Sn
r(t) where r(t) =

√
R2

0 − 2nt and the

solution exists for T = R2
0

2n .

x

z

y

Figure: Shrinking spheres of dimension 2

Devesh Rajpal On Mean Curvature Flow of Hypersurfaces October 21, 2022 11 / 23



2 Cylinder over solutions : IfMn
t ⊂ Rn+1 is a solution of MCF then so

isMn
t × Rm ⊂ Rn+m+1.

x

z

y

Figure: Cylinder S1 × R
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3 Minimal hypersurfaces : Any hypersurface with H ≡ 0 is a stationary
solution of MCF.

Figure: A catenoid
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Evolution equations under MCF
In local coordinates we have the following evolution equations under MCF

∂tgij = −2Hhij (0.1)

∂thij = ∆hij − 2Hhilg lmhmj + |A|2hij (0.2)
∂tH = ∆H + |A|2H (0.3)

∂t |A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4 (0.4)

∂t

(
|A|2 − 1

nH
2
)

= ∆
(
|A|2 − 1

nH
2
)
− 2

(
|∇A|2 − 1

n |∇H|
2
)

+ 2|A|2
(
|A|2 − 1

nH
2
)

(0.5)

In diagonalized frame, |A|2 =
(∑n

i=1 κ
2
i
)
and H2 = (

∑n
i=1 κi )2 so

|A|2 − 1
nH

2 = 1
n
∑
i<j

(κi − κj)2
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Maximum Principles

Scalar maximum principle
Let g(t) ∈ [0,T ) be a 1-parameter family of Riemannian metrics on a
closed manifoldMn and β :Mn × [0,T )→ R be a locally bounded
function. Let u :Mn × [0,T )→ R be a C2 function satisfying the
following inequality

∂

∂t u(x , t) ≥ ∆g(t)u + βu

If u(x , 0) ≥ 0 for all x ∈Mn, then u(x , t) ≥ 0 for all (x , t) ∈Mn× [0,T ).
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Maximum principles
Using maximum principle we can prove that the compact manifolds with
H > 0 must extinct in finite time.
Theorem
Let X : Mn × [0,T )→ Rn+1 be a maximal solution of the mean curvature
flow with X0 compact and with positive mean curvature everywhere. Then
the mean curvature remains positive at all times and T <∞.

Proof.
The mean curvature satisfies the equation

∂tH = ∆H + |A|2H ≥ ∆H + 1
nH

3

Let ψ be the solution of the ordinary differential equation

dψ
dt = 1

nψ
3, ψ(0) = Hmin(0) > 0
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Proof.
Considering ψ as a function on Mn × [0,T ) which is constant in the space
slice, we get

∂

∂tψ(H − ψ) ≥ ∆(H − ψ) + 1
n (H3 − ψ3)

so by the maximum principle

H ≥ ψ for t ∈ [0,T )

Solving for ψ gives
ψ(t) = Hmin(0)√

1− ( 2
n )Hmint

which blows up in finite time.
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Maximum Principles

Let M = Mijdx i ⊗ dx j be a symmetric 2-tensor. We say M is non-negative
if vTMv = Mijv iv j ≥ 0 for all vectors v . Let Nij = p(Mij , gij) be a tensor
formed by contracting products of Mij with itself using the metric. Also
suppose that whenever v is a null-eigenvector of Mij (i.e. Mijv j = 0), we
have Nijv iv j ≥ 0.

Tensor maximum principle
Let g(t) ∈ [0,T ) be a 1-parameter family of Riemannian metrics on a
closed manifoldMn. Let Mij be a symmetric non-negative tensor evolving
by the equation

∂

∂t Mij = ∆Mij + Nij for all (x , t) ∈Mn × [0,T )

where Nij = p(Mij , gij) satisfies the null-eigenvector condition above. If M
is non-negative at t = 0, then it remains non-negative on [0,T ).
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Maximum Principles

Corollary
Let X : Mn × [0,T )→ Rn+1 be a compact solution of MCF such that X0
is convex (A = hijdx i ⊗ dx j is non-negative). Then Xt is convex for all
t ∈ [0,T ).
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Avoidance Principle

A geometric application of maximum principle is the avoidance principle.
It says that if we start with two disjoint hypersurfaces and evolve them by
MCF, then they remain disjoint for all time defined.
Let X1 : Mn

1 × [0,T )→ Rn+1 and X2 : Mn
2 × [0,T )→ Rn+1 be properly

immersed solutions of MCF such that at least one of them is compact.
Define the distance function d : Mn

1 ×Mn
2 × [0,T )→ R by

d(x , y , t) = |X1(x , t)− X2(y , t)|

Assume at time t = 0, the hypersurfaces are disjoint, so
X1(Mn

1 , 0) ∩ X2(Mn
2 , 0) = φ, so d0 + inf(x ,y)∈Mn

1×Mn
2
d(x , y , 0) > 0.
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Avoidance Principle

Avoidance principle
Let X1 and X2 are solutions of mean curvature flow on closed manifolds. If
X1(Mn

1 , 0) ∩ X2(Mn
2 , 0) = φ, which is equivalent to d0 > 0 then

d(x , y , t) ≥ d0 for all (x , y , t) ∈ Mn
1 ×Mn

2 × [0,T )
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Avoidance Principle
The avoidance principle gives another proof on the finite extinction time of
compact hypersurface. Given any compact hypersurfaces, we can enclose
it in a sphere of large radius without touching. Now the sphere collapses in
finite time so by avoidance principle, the hypersurface must collapse in
finite time too.

Figure: Compact hypersurface enclosed in a sphere
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Huisken’s theorem

Huisken’s theorem
Let X : Mn × [0,T )→ Rn+1, n ≥ 2 be a maximal solution of MCF such
that Mn is compact and X0 = X (·, 0) is convex embedding. Then
Xt = X (·, t) is a convex embedding for all t > 0 and Xt converges to a
point p ∈ Rn+1 as t → T . Further the rescaled embeddings
X̃t : Mn → Rn+1 defined by

X̃t(x) + Xt(x)− p√
2n(T − t)

converge uniformly in the smooth topology to a smooth embedding whose
image coincides with the unit sphere Sn.
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