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Preface

This thesis is presented to Chennai Mathematical Institute in fulfillment of the thesis
requirement for the degree Master of Science in Mathematics. The goal of this thesis is
to give an introduction to mean curvature flow and explore some of its properties. The
mean curvature flow is a PDE on a hypersurface immersed in Euclidean space. It is the
negative of the area functional, so it flows hypersurface in the direction of their steepest
descent of area functional. Similar to Ricci flow it’s a heat-type equation, and we expect
some uniformizing properties out of it. However, the flow develops singularity in finite
time for mean-convex hypersurface. We look at some aspects of the singularity analysis
which includes a monotonicity formula and convexity estimates.

Organization

The thesis is divided into three chapters where the first chapter serves as an intro-
duction to the mean curvature flow. One of the crucial results done here is Huisken’s
monotonicity formula which describes the limit of type I singularities as a self-shrinker
solution.
Following this, we study the asymptotic properties of the flow in the more general

mean-convex setting in Chapter 2. Huisken-Sinestrari proved that asymptotically the
flow converges to a weakly convex hypersurface.
Chapter 3 is on the Noncollapsing of mean-convex hypersurfaces. The result of Sheng-

Wang and Andrews states that non-collapsing is preserved under mean curvature flow.
The proof goes through deriving a differential inequality for inscribed curvature and
using the maximal principle for viscosity solutions.
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1 Introduction to Mean curvature flow

We introduce the second fundamental form and mean curvature associated with an
immersion of a hypersurface. The mean curvature flow is then the negative gradient
flow of the volume functional on hypersurfaces.

1.1 Fundamentals of hypersurfaces

LetMn be a smooth n-dimensional manifold with a smooth immersion X :Mn → Rn+1.
If X is a homeomorphism onto its image, we say X is an embedding and its image
Mn = X(Mn) has the structure of a smooth n-dimensional submanifold of Rn+1. We
say that Mn is an immersed hypersurface and M is an embedded hypersurface
respectively. Throughout this thesis, we will denote the embedded manifold X(M) by
scriptM to differentiate between the domain and its image. Let (U, {xi}) be a coordinate
system on Mm, in Euclidean coordinates the pushforward of tangent vectors will be

dX(∂i) :=
∂X

∂xi
= ∂iX

where dX : TMn → TRn+1 is the derivative of X. Since dX is an injection for each
point in Mn, we can define an inner product on TMn which in local coordinates is given
by

g(∂i, ∂j) = ⟨∂iX, ∂jX⟩

where ⟨·, ·⟩ denotes the standard inner product on Euclidean space. We will use the
notation ⟨·, ·⟩ for g as well which is consistent because of the immersion condition. Fur-
ther, we can define the Levi-Civita connection on Mn from the Levi-Civita connection
on Rn+1. Let Xp ∈ TpRn+1 be a vector and Y : U → TRn+1|U be a local vector field in
a neighborhood U containing p. The Levi-Civita connection of Y with respect to X on
Rn+1 is given by

DXpY = (Xp(Y
1), . . . , Xp(Y

n+1))

where Y = (Y 1, . . . , Y n+1) are the components of Y in the standard coordinates. Using
the immersion condition, we define a connection on TMn induced from D. Let x ∈Mn

and u ∈ TxM
n, ṽ ∈ TMn|U for some open set U containing x. Define a connection ∇ by

(∇uṽ) = π(DdX(u)(Ṽ )) (1.1.1)

where Ṽ is an extension of dX(ṽ) to an open set of Rn+1 containing X(U) and πX(x) :
TX(x)Rn+1 → dX(TxM) is the orthogonal projection onto the tangent subspace.
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CHAPTER 1. INTRODUCTION TO MEAN CURVATURE FLOW

Lemma 1.1.1. The connection defined by Eq. (1.1.1) is well-defined and is the
unique Levi-Civita connection on (Mn, g).

When X is an embedding, the restriction of the tangent bundle of TRn+1|M can be
decomposed as the direct sum

TM⊕NM

where NM is the normal bundle which can be described as

NM = {(p, ν) ∈ TRn+1|M : ⟨u, ν⟩ = 0 for all u ∈ TpM}.

For dimension reasons, the normal bundle at each point is one-dimensional. We fix
a choice of unit normal νp for each p ∈ M. This leads to tangential projection
·T : TRn+1 → TM and normal projection ·⊥ : TRn+1 → NM maps of vectors in
TRn+1 given by

uT = u− ⟨u, ν⟩ ν, and u⊥ = ⟨u, v⟩ ν

respectively. We can define the Levi-Civita connection on an embedded hypersurface M
using the normal projection,

∇uV = (DuV )T

where u is a vector and V is a local vector field. Notice that this is consistent with
Eq. (1.1.1) since dX−1 is the tangential component. The next step is to calculate the
Christoffel symbols of the connection ∇. For local coordinates (U, {xi}) in Mn, the
Christoffel symbols Γk

ij : U → R are obtained by the formula

(∂i∂jX)T = Γk
ij∂kX

Taking the inner product with ∂lX and inverting it we get

Γk
ij = gkl ⟨∂i∂jX, ∂lX⟩ .

The normal part of the Euclidean covariant derivative is a tensor, called the second
fundamental form of M and is denoted by A. Let u, v ∈ TM and V ∈ Γ(TM) be an
extension of v. Then A is given by

A(u, v) := (DuV )T

is independent of the extension V and is a symmetric two-tensor. The components of
A over local coordinates will be denoted by hij = A(∂i, ∂j). Further we can use the
isomorphism TpM ∼= T ∗

pM given by g to convert A into a linear map Lp : TpM → TpM
given by

⟨Lp(u), v⟩ = A(u, v).

This is called the Weingarten map. Also if N is a local extension of the normal, then

Lp(u) = DuN.
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1.2. MEAN CURVATURE FLOW

This is true because

0 =
1

2
Du|N |2 = ⟨DuN, ν⟩ and ⟨DuN, v⟩ = −⟨ν,DuV ⟩ = A(u, v)

where V is some extension of v. As A is symmetric, the Weingarten map is a self-adjoint
operator with real eigenvalues. The (ordered) eigenvalues

κ1(p) ≤ · · · ≤ κn(p)

of Lp are called principal curvatures. If we switch the sign of the normal, the principal
curvatures flip the sign as well since the Weingarten map flips the sign. The trace of the
Weingarten map is called the mean curvature and is denoted by H. So in terms of
principal curvatures,

H = tr(L) = κ1 + · · ·+ κn.

We say that a hypersurface X : Mn → Rn+1 is mean convex if it admits a unit
normal field with respect to which its mean curvature is non-negative and strictly
mean convex if it admits a unit normal vector field with respect to which its mean
curvature is positive.
We can express the Riemann curvature tensor in terms of principal curvatures as

follows,

Rijkl =
〈
∇2

ji∂k −∇2
ij∂k, ∂l

〉
= hikhjl − hilhjk,

Ricij = gklRikjl = Hhij − hilg
lkhkj ,

R = gijRicij = gijgklRikjl = H2 − |A|2.

Further, the principal curvatures satisfy some gradient formulas given as follows

Lemma 1.1.2. 1. (Codazzi’s identity) ∇ihjk = ∇jhik.

2. ∆hij = ∇i∇jH +Hhilg
lmhmj − |A|2hij .

3. (Simon’s identity) 1
2∆|A|2 = ⟨hij ,∇i∇jH⟩+ |∇A|2+Z where Z = H tr(L3)−

|A|4.

1.2 Mean Curvature Flow

Now we define the mean curvature flow (MCF) on hypersurfaces.

Definition 1.2.1. A one-parameter family of immersion X :Mn × I → Rn+1 is said

5



CHAPTER 1. INTRODUCTION TO MEAN CURVATURE FLOW

to evolve by mean curvature flow (MCF) if

∂

∂t
X(p, t) = H⃗(p, t) = −H(p, t)ν(p, t) ∀(p, t) ∈Mn × I. (1.2.1)

Notice that the mean curvature vector H⃗ = −Hν is independent of the direction of
normal ν. The following lemma demonstrates the similarity of mean curvature flow with
the heat equation

Lemma 1.2.1. The mean curvature vector is equal to the Laplace-Beltrami operator
of the hypersurface

H⃗ = −Hν = ∆MX.

Proof. Notice that ∂i∂jX = Γk
ij∂kX − hijν. Contracting this,

∆MX = gij∇i∇jX

= gij(∂i∂jX − Γk
ij∂kX)

= −gijhijν
= −Hν.

We can generalize the definition to include only the normal part as well.

Definition 1.2.2. A one-parameter family of immersion X :Mn × I → Rn+1 is said
to evolve by reparametrized mean curvature flow (MCF) if(

∂

∂t
X(p, t)

)⊥
= H⃗(p, t) = −H(p, t)ν(p, t) ∀(p, t) ∈Mn × I. (1.2.2)

The reason it is called so is that if we consider the one-parameter family of diffeomor-
phisms ψt :M →M generated by

∂ψt

∂t
(p) = dX−1

t

((
∂X

∂t
(ψt(p), t)

)⊥
− ∂X

∂t
(ψt(p), t)

)
, ψ0 = idM

then the reparametrized manifold Xt = Xt ◦ ψt is a solution of mean curvature flow.
The flow exists for a short time on any arbitrary hypersurface which is proved in

[ACGL22]. This is known as the short-time existence of solutions

Theorem 1.2.2 (Short time existence). Let X0 :M
n → Rn+1 be a smooth immersion

of a compact manifold without boundary. There exists an ϵ > 0 and a smooth
solution X : Mn × [0, ϵ) → Rn+1 to MCF, with X(·, 0) = X0. Moreover, the
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1.2. MEAN CURVATURE FLOW

solution is unique.

1.2.1 Examples of the mean curvature flow

It is difficult to solve the mean curvature flow PDE on an arbitrary hypersurface. The
limited number of examples come from ansatz or special cases,

1. Shrinking spheres: Let Sn(r) ⊂ Rn+1 be sphere of dimension n with radius
r. Since the mean curvature H = n

r is constant across the sphere, we make the
ansatz that the hypersurface remains spherical under mean curvature flow. Let
Mt = Sn(r(t)) be the solution, then the PDE is reduced to an ODE given by

d

dt
r(t) = − n

r(t)
(1.2.3)

whose solution is r(t) =
√
r20 − 2nt with r(0) = r0. So the shrinking spheres

Sn(
√
r20 − 2nt) are a solution to the mean curvature flow for t ∈ [0,

r20
2n).

x

z

y

Figure 1.1: Shrinking spheres of dimension 2

2. Evolution of Graphs: Let f : Rn → R be a smooth function. The graph of f in
Rn+1,

M = {(x, f(x)) ∈ Rn+1 : x ∈ Rn}
is a smooth hypersurface. The mean curvature vector at (x, f(x)) for the hyper-
surface can be calculated by the formula

−Hν + gijΓk
ij∂kX = gij∂i∂jX =

(
0,
√
1 + |∇f |2div

(
∇f√

1 + |∇f |2

))
.

Ecker and Huisken proved in [EH89] that graphs evolving under the mean curvature
flow remain graphs. So a family of graphs Mt = {(x, ft(x)) : x ∈ Rn+1} with the
condition

∂

∂t
ft(x) =

√
1 + |∇ft|2 div

(
∇ft√

1 + |∇ft|2

)
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CHAPTER 1. INTRODUCTION TO MEAN CURVATURE FLOW

is a solution of the mean curvature flow (after a reparametrization).

3. Minimal surfaces: Minimal surfaces are the critical points of the volume func-
tional. A hypersurface M is said to be a minimal hypersurface if it satisfies
H(x) = 0 for all x ∈ M. Hence, minimal hypersurfaces are stationary solutions of
the mean curvature flow.

4. Products of solutions with Euclidean space : Suppose Mn
t ⊂ Rn+1 is a

solution of the mean curvature flow. It is easy to verify that the mean curvature
vector of the product Mn

t × Rm ⊂ Rn+1 × Rm is given by

H⃗(x, y) = (H(x)ν(x), 0),

which implies that the time-parametrized product Nt = Mt × Rn+1 is a solution
of the mean curvature flow as well.

x

z

y

Figure 1.2: Cylinder S1 × R

1.2.2 Mean curvature flow as the gradient of the area functional

Let M0 ⊂ Rn+1 be a smooth hypersurface and X :Mn × (−ϵ, ϵ) → Rn+1 be a variation
with X(·, 0) = M0. Considering area as a function of time over the variation, we get

d

dt
Area(Mt) =

∫
Mt

⟨∂tX,Hν⟩ (1.2.4)

Using this, the gradient of the area functional is

∇Area = Hν

so the most efficient way to reduce the volume is to choose the variation so that

∂tX = −∇Area = −Hν
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1.3. EVOLUTION EQUATIONS

which is the mean curvature flow. In particular, we get the following equation for the
evolution of area under mean curvature flow,

d

dt
Area(Mt) = −

∫
Mt

H2

which is the steepest descent of area in the space of hypersurface up to speed-parametrization.

1.3 Evolution equations

To understand the properties of mean curvature flow it is essential to know the evolution
of geometric quantities of the hypersurface. LetX :Mn×I → Rn+1 be a smooth solution
of mean curvature flow, so

∂tX(x, t) =
−→
H (x, t) = −H(x, t)ν(x, t).

The induced metric on the hypersurface is given by g = X∗(δ) where δ is the flat metric
on Rn+1. This means that if {xi} are local coordinates on Mn, then the components of
the induced metric are given by

gij = δ(X∗(∂i), X∗(∂j)) =

〈
∂X

∂xi
,
∂X

∂xj

〉
= ⟨∂iX, ∂jX⟩ .

Lemma 1.3.1. Let X :Mn× I → Rn+1 be a solution of mean curvature flow. Then
the evolution equation of the metric, normal, second fundamental form, and mean
curvature is given by

∂tgij = −2Hhij (1.3.1)

∂tν = ∇H (1.3.2)

∂thij = ∆hij − 2Hhilg
lmhmj + |A|2hij (1.3.3)

∂tH = ∆H + |A|2H (1.3.4)

∂t|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4 (1.3.5)

Proof. 1. In local coordinates we have

∂tgij = ∂t ⟨∂iX, ∂jX⟩
= ⟨∂i(∂tX), ∂jX⟩+ ⟨∂iX, ∂t(∂jX)⟩
= ⟨∂i(−Hν), ∂jX⟩+ ⟨∂iX, ∂j(−Hν)⟩
= −H ⟨∂tν, ∂jX⟩ −H ⟨∂iX, ∂tν⟩
= −2Hhij .
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CHAPTER 1. INTRODUCTION TO MEAN CURVATURE FLOW

2. Since ⟨ν, ν⟩ = 1, we have 2⟨∂tν, ν⟩ = 0, so the vector ∂tν is in the tangent plane of
the hypersurface. We can write it as a linear combination of tangent vectors {∂jX} to
get

∂tν = ⟨∂tν, ∂iX⟩ ∂jXgij = −⟨ν, ∂i (∂tX)⟩ ∂jXgij

= ⟨ν, ∂i (Hν)⟩ ∂jXgij

= ∂iH∂jXg
ij +H ⟨ν, ∂iν⟩ ∂jXgij

= ∂iH∂jXg
ij = ∇H.

3. From the relations

∂i∂jX = Γk
ij∂kX − hijν and ∂jν = hjlg

lm∂mX

we get

∂thij = −∂t ⟨∂i∂jX, ν⟩

= ⟨∂i∂j(Hν), ν⟩ −
〈
∂i∂jX, ∂lH∂mXg

lm
〉

= ∂i∂jH +H
〈
∂i

(
hjmg

ml∂lX
)
, ν
〉
−
〈
Γk
ij∂kX − hijν, ∂lH∂mXg

lm
〉

= ∂i∂jH − Γk
ij∂kH +Hhjmg

ml
〈
Γp
il∂pX − hilν, ν

〉
= ∇i∇jH −Hhilg

lmhmj .

4. Utilizing the previous evolution equation with the product formula of derivatives,

∂tH = ∂t(g
ijhij) = (∂tg

ij)hij + gij∂thij

= −gik(∂tgkl)gljhij + gij(∆hij − 2Hhilg
lmhmj + |A|2hij)

= −gik(−2Hhkl)g
ljhij +∆(gijhij)− 2Hgijglmhilhmj + |A|2H

= 2H|A|2 +∆H − 2H|A|2 + |A|2H
= ∆H + |A|2H.

5. Again from the previous result on the evolution of hij we get

∂t|A|2 = ∂t(g
ikgjlhijhkl)

= 4Hgimgknhmng
jlhijhkl + 2gikgjlhkl(∆hij − 2Hhimg

mnhnj + |A|2hij)
= 2gikgjlhkl∆hij + 2|A|4,

and
∆|A|2 = gkl∇k∇l(g

pqgmnhpmhqn) = 2gpqgmnhpm∆hqn + 2|∇A|2.
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1.4. MAXIMUM PRINCIPLE

Corollary. If mean curvature is positive everywhere on the initial hypersurface, then
it remains so throughout the flow.

Proof. We apply the maximum principle to the evolution equation of H.

Remark. This property of mean curvature holds even when the hypersurface is
embedded in an arbitrary Riemannian manifold with positive Ricci curvature.

1.4 Maximum principle

We can extend the maximum principle on Euclidean space to general Riemannian man-
ifolds in the following fashion. Refer to [CK04] for proofs.

Lemma 1.4.1 (Scalar maximum principle). Let g(t) ∈ [0, T ) be a 1-parameter family
of Riemannian metrics on a closed manifold Mn and β : Mn × [0, T ) → R be a
locally bounded function. Let u : Mn × [0, T ) → R be a C2 function satisfying the
following inequality

∂

∂t
u(x, t) ≥ ∆g(t)u+ βu

If u(x, 0) ≥ 0 for all x ∈ Mn, then u(x, t) ≥ 0 for all (x, t) ∈ Mn × [0, T ).

This can be generalized to include a non-linear term as well.

Lemma 1.4.2 (Comparison lemma). Let u : Mn × [0, T ) 7→ R be C2 function satis-
fying

∂u

∂t
≥ ∆g(t)u+ ⟨X,∇u⟩+ F (u)

on a closed manifold. Suppose there exists C ∈ R such that u(x, 0) ≥ C for all
x ∈ Mn, and let ψ be the solution to the associated ordinary differential equation
with initial condition

dψ

dt
= F (ψ), ψ(0) = C

Then u(x, t) ≥ ψ(t) for all x ∈Mn and t ∈ [0, T ) such that ψ(t) exists.

The above-stated scalar maximum principle can be further extended to tensors. This
was done by Hamilton in [Ham82] in the context of Ricci flow. Let M = Mijdx

i ⊗ dxj

be a symmetric 2-tensor. We say M is non-negative if vTMv = Mijv
ivj ≥ 0 for all

vectors v. Let Nij = p(Mij , gij) be a tensor formed by contracting products of Mij with
itself using the metric. Also suppose that whenever v is a null-eigenvector of Mij (i.e.
Mijv

j = 0), we have Nijv
ivj ≥ 0. Then the following maximum principle holds

11



CHAPTER 1. INTRODUCTION TO MEAN CURVATURE FLOW

Lemma 1.4.3 (Tensor maximum principle). Let g(t) ∈ [0, T ) be a 1-parameter family
of Riemannian metrics on a closed manifold Mn. Let Mij be a symmetric non-
negative tensor evolving by the equation

∂

∂t
Mij = ∆Mij + uk∇kMij +Nij for all (x, t) ∈ Mn × [0, T )

where Nij = p(Mij , gij) satisfies the null-eigenvector condition above. If M is non-
negative at t = 0, then it remains non-negative on [0, T ).

The tensor maximum principle can be used to prove that convexity is preserved under
mean curvature flow.

Lemma 1.4.4. Let X : Mn × [0, T ) → Rn+1 be a solution to mean curvature flow.
If the initial hypersurface X(·, 0) = M0 is convex then Mt is also convex for all
t ∈ [0, T ).

Proof. The condition of convexity is equivalent to hij ≥ 0. We will prove a stronger
result. Suppose that

ϵhgij ≤ hij

for some constant 0 < ϵ ≤ 1
n at t = 0, then the inequality remains true for 0 ≤ t < T .

In the tensor maximum principle set

Mij =
hij
H

− ϵgij , uk =
2

H
gkl∇lH

and
Nij = 2ϵHhij − 2himg

mlhlj .

To calculate the time derivatives, we use Lemma 1.3.1,

∂t

(
hij
H

)
=
H∆hij − hij∆H

H2
− 2himg

mlhij ,

∆

(
hij
H

)
=
H∆hij − hij∆H

H2
− 2

H
gkl∇k∇l

(
hij
H

)
.

It remains to check that Nij satisfies the null-eigenvector in this setting. Assume that
for some vector X = {Xj},

hijX
j = ϵHXi

then

NijX
iXj = 2ϵHhijX

iXj − 2himg
mlhljX

iXj

= 2ϵ2H2|X|2 − 2ϵ2H2X2 = 0.

Substituting ϵ = 0 yields the result.
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1.5. LONG TIME EXISTENCE

1.5 Long time existence

In this subsection, we will prove that the blow-up of the second fundamental form is the
only obstruction to continuing the flow. The proof goes by contrapositive, relying on the
Bernstein-type estimates. This technique is very similar to the one Hamilton used for
Ricci flow [Ham82]. A solution of the mean curvature flow X : Mn × [0, T ) → Rn+1 is
said to be maximal if given any other solution Y :Mn× [0, S) → Rn+1 which coincides
with X for t ∈ [0, T )∩ [0, S) we have T ≥ S. Such a T is said to be the maximal time
for X. This theorem characterizes the maximal time of existence.

Theorem 1.5.1. Let X : Mn × [0, T ) → Rn+1 be a solution of the mean curvature
flow with Mn compact. If X is maximal then T <∞ and

sup
Mn×[0,T )

|A| = ∞.

Before jumping into the proof we need a general notation for complicated tensor
expressions occurring in evolution equations.

Definition 1.5.1. Given any two tensors A and B, we write A∗B to denote any linear

combination of tensors formed by contraction on A
a1...ap
i1...ik

B
b1...bq
j1...jl

with g or g−1. The
iterated product A∗B ∗C can be viewed as A∗ (B ∗C) which is associative and can
be written without brackets. Also, denote the multifold product A ∗ · · · ∗A︸ ︷︷ ︸

p−times

by A∗p.

The Gauss equation in this notation yields Rm = A ∗ A which after differentiation
gives ∇Rm = A ∗ ∇A.

The following lemma will be necessary to find out the time derivative of covariant
derivatives and gives the commutator relation between them.

Lemma 1.5.2. Let S be a tensor with an evolution equation given by

∂tS = ∆S + T

where T is another tensor of the same rank. Then the evolution equation of the
covariant derivative is

∂t∇S = ∆∇S +A ∗A ∗ ∇S +A ∗ ∇A ∗ S +∇T. (1.5.1)

Proof. Recall the time evolution of Christoffel symbol is given by

∂tΓ
k
ij =

1

2
gkl(∇i∂tgjl +∇j∂tgil −∇l∂tgij). (1.5.2)

13



CHAPTER 1. INTRODUCTION TO MEAN CURVATURE FLOW

Substituting ∂tgij = −2Hhij we get

∂tΓ
k
ij = −gkl(∇i(Hgjl) +∇j(Hgil)−∇l(hij)) = A ∗ ∇A.

Consider the commutator

∂t∇S = ∇∂tS + ∂tΓ ∗ S
= ∇(∆S + T ) +A ∗ ∇A ∗ S
= ∆∇S +∇Rm ∗ S +Rm ∗ ∇S +∇T +A ∗ ∇A ∗ S
= ∆∇S +A ∗A ∗ ∇S +A ∗ ∇A ∗ S +∇T

where we have used the Ricci identity [∇,∆]S = ∇Rm ∗ S +Rm ∗ ∇A.

Lemma 1.5.3. The evolution equation of the higher gradient of the second funda-
mental form is given by

∂t∇mA = ∆∇mA+
∑

i+j+k=m

∇iA ∗ ∇jA ∗ ∇kA (1.5.3)

where m ∈ N ∪ {0}. Further, the norm of the gradient satisfies

∂t|∇mA|2 = ∆|∇mA|2 − 2|∇m+1A|2 +
∑

i+j+k=m

∇iA ∗ ∇jA ∗ ∇kA ∗ ∇mA (1.5.4)

where m ∈ N ∪ {0}.

Proof. We induct on m. For base case m = 0, the second fundamental form evolution
equation is

∂tA = ∆A− 2HA2 + |A|2A
= ∆A+A ∗A ∗A.

Now suppose the equation holds for m, then for m+ 1 we have

∂t∇m+1A = ∇∂t(∇kA) + (∂tΓ) ∗ ∇mA

= ∇

∆∇mA+
∑

i+j+k=m

∇iA ∗ ∇jA ∗ ∇kA

+A ∗ ∇A ∗ ∇mA

= ∆∇m+1A+∇Rm ∗ ∇mA+Rm ∗ ∇m+1A+
∑

i+j+k=m+1

∇iA ∗ ∇jA ∗ ∇kA

= ∆∇m+1A+
∑

i+j+k=m+1

∇iA ∗ ∇jA ∗ ∇kA

14



1.5. LONG TIME EXISTENCE

using Ricci identity and Gauss equation Rm = A ∗A. For the norm, we get

∂t|∇mA|2 = 2 ⟨∂t∇mA,∇mA⟩+A ∗A ∗ ∇mA ∗ ∇mA

where the second term comes from time derivative ∂tg
ij = −2Hhij = A ∗ A. This

simplifies to

∂t|∇mA|2 = 2

〈
∆∇mA+

∑
i+j+k=m

∇iA ∗ ∇jA ∗ ∇kA,∇mA

〉
+A ∗A ∗ ∇mA ∗ ∇mA

= 2 ⟨∆∇mA,∇mA⟩+
∑

i+j+k=m

∇iA ∗ ∇jA ∗ ∇kA∇mA

= ∆|∇mA|2 − 2|∇m+1A|2 +
∑

i+j+k=m

∇iA ∗ ∇jA ∗ ∇kA ∗ ∇mA

We can consider the maximum principle on the previous lemma. This gives control of
derivates of the second fundamental form based on the bound of the second fundamental
form.

Lemma 1.5.4. Let X : Mn × [0, T ) → Rn+1 be a solution of the mean curvature
flow with Mn compact. Suppose that T <∞ and C0 = supMn×[0,T ) |A| <∞. Then
for each m ∈ N there exists a constant Cm <∞ depending only on initial manifold
such that

sup
Mn×[0,T )

|∇mA| ≤ Cm. (1.5.5)

Proof. From Eq. (1.5.4), we can estimate

∂t|∇mA|2 ≤ ∆|∇mA|2 − 2|∇m+1A|2 + Cn,m

∑
i+j+k=m

|∇iA||∇jA||∇kA||∇mA|

where Cn,m < ∞ only depends on n and m. We now proceed by induction on m.
Suppose that for l ∈ {1, . . . ,m− 1} we have

sup
M×[0,T )

|∇lA|2 ≤ Cl

for some constants Cl <∞. From the previous relation,

∂t|∇mA|2 ≤ ∆|∇mA|2 − 2|∇m+1A|2 + Cn,m

|A|2|∇mA|2 +
∑

i+j+k=m
i,j,k≤m−1

|∇iA||∇jA||∇kA||∇mA|


≤ ∆|∇mA|2 + Cn,mC

2
0 |∇mA|2 + cm|∇mA|

≤ ∆|∇mA|2 + 2Cn,mC
2
0 |∇mA|2 + cm

4C2
0Cn,m

(1.5.6)

15



CHAPTER 1. INTRODUCTION TO MEAN CURVATURE FLOW

using the induction hypothesis. To absorb the |∇mA|2 term on the right-hand side
consider the inequality for m− 1,

∂t|∇m−1A|2 ≤ ∆|∇m−1A|2 − 2|∇mA|2 + Cn,m−1

∑
i+j+k=m−1

|∇iA||∇jA||∇kA||∇m−1A|

≤ ∆|∇m−1A|2 − 2|∇mA|2 + cm−1. (1.5.7)

Multiplying Eq. (1.5.7) by Cn,mC
2
0 and adding to Eq. (1.5.6),

∂t
(
|∇mA|2 + Cn,mC

2
0 |∇m−1A|2

)
≤ ∆

(
|∇mA|2 + Cn,mC

2
0 |∇m−1A|2

)
+

cm
4C2

0Cn,m

+ cm−1Cn,mC
2
0 .

Now by comparison principle, we get a bound

sup
Mn×[0,T )

(
|∇mA|2 + Cn,mC

2
0 |∇m−1A|2

)
≤ Cm

and from this, we can deduce that

sup
M×[0,T )

|∇mA|2 ≤ Cm

for some constant Cm depending only on n,m,C0, . . . , Cm−1 and the initial hypersurface.
This completes the induction.

We can improve the higher-order covariant derivative bound to include a time factor
as well. The following lemma will imply a rapid decrease in the norm of higher covariant
derivatives of the second fundamental form with respect to time.

Lemma 1.5.5. Let X : Mn × [0, r2] → Rn+1 be a solution of the mean curvature
flow. Suppose there exists a constant C0 <∞ such that

|A|2 ≤ C0r
−2

on Mn × [0, r2]. Then for each m ∈ N, there exists a constant Cm depending only
on n,M0 and C0 such that

tm|∇mA|2 ≤ Cmr
−2

on Mn × [0, r2].

Proof. First, we will demonstrate how to obtain the bound for m = 1 and then extend

16



1.5. LONG TIME EXISTENCE

the method for general m using induction. We know that

∂t|∇A|2 = ∆|∇A|2 − 2|∇2A|2 +
∑

i+j+k=1

∇iA ∗ ∇jA ∗ ∇kA ∗ ∇mA

≤ ∆|∇A|2 − 2|∇2A|2 + Cn,1

∑
i+j+k=1

|∇iA||∇jA||∇kA||∇A|

≤ ∆|∇A|2 − 2|∇2A|2 + 3Cn,1|A|2||∇A|2

≤ ∆|∇A|2 − 2|∇2A|2 + 3Cn,1C0r
−2|∇A|2.

To obtain a better bound we want to utilize the good term −2|∇2A|2 and one way to
do this is to define another term with a t-factor and |A|2,

F = t|∇A|2 + β|A|2

which is bounded at t = 0 by βC0r
−2. Notice that

∂tF ≤ |∇A|2 + t
(
∆|∇A|2 − 2|∇2A|2 + 3Cn,1C0r

−2|∇A|2
)
+ β

(
∆|A|2 − 2|∇A|2 + 2|A|4

)
≤ ∆F − 2|∇2A|2 +

(
1 + 3tCn,1C0r

−2 − 2β
)
|∇A|2 + 2βC2

0r
−4

≤ ∆F +
(
1 + 3Cn,1C

2
0 − 2β

)
|∇A|2 + 2βC2

0r
−4.

Choose β > (1+3Cn,1C
2
0 )/2, so that the coefficient of |∇A|2 is negative. The comparison

theorem then gives

sup
x∈M

F (x, t) ≤ βC0r
−2 + 2βC2

0r
−4t ≤ C1r

−2

for some constant C1 > 0. Hence,

t|∇A|2 ≤ C1r
−2

on M× [0, r2] which establishes the inequality for m = 1.
Now assume the inequality holds for 1, . . . ,m− 1. Then,

∂t|∇mA|2 ≤ ∆|∇mA|2 − 2|∇m+1A|2 + Cn,m

∑
i+j+k=m

|∇iA||∇jA||∇kA||∇mA|

≤ ∆|∇mA|2 − 2|∇m+1A|2 + Cn,m

3|A|2|∇mA|2 +
∑

i+j+k=m
i,j,k≤m−1

|∇iA||∇jA||∇kA||∇mA|


≤ ∆|∇mA|2 − 2|∇m+1A|2 + 3Cn,mC0r

−2|∇mA|2 + Cn,mLmr
−3t−

m
2 |∇mA|

≤ ∆|∇mA|2 − 2|∇m+1A|2 ++Cn,mr
−2

(
6C0|∇mA|2 + L2

mr
−2t−m

4C0

)
≤ ∆|∇mA|2 − 2|∇m+1A|2 + r−2(Tm|∇mA|2 + Smr

−2t−m)

≤ ∆|∇mA|2 − 2|∇m+1A|2 + Umr
−2(|∇mA|2 + r−2t−m)

17



CHAPTER 1. INTRODUCTION TO MEAN CURVATURE FLOW

where Lm =
∑

i+j+k=m
i,j,k≤m−1

√
CiCjCk, Tm = 6Cn,mC0 , Sm = (Cn,mL

2
m)/4C0 and Um =

max{Tm, Sm}.
Also, from the induction hypothesis, there exist constants Um−k for 1 ≤ k ≤ m such

that
∂t|∇m−kA|2 ≤ ∆|∇m−kA|2 − 2|∇m−k+1A|2 + Um−kr

−4t−(m−k)

Now like in the m = 1 case, we define

F = tm|∇mA|2 + βm

m∑
k=1

(m− 1)!

(m− k)!
tm−k|∇m−kA|2

where βm is a positive constant to be determined later. Notice that at t = 0 we have a
bound on F given by

F (x, 0) ≤ βm(m− 1)!C0r
−2

Using the previously established estimates, the differential of F satisfies

∂tF ≤∆F + Umr
−2tm|∇mA|2 + Umr

−4 +mtm−1|∇mA|2

+ βm

m∑
k=1

(m− 1)!

(m− k)!

{
−2tm−k|∇m−k+1A|2 + Um−kr

−4 + (m− k)tm−k−1|∇m−kA|2
}
.

This expression is the reason we considered sharper estimate because the good terms

−2
(m− 1)!

(m− k)!
tm−k|∇m−k+1A|2

can be utilized to compensate for the bad terms

(m− 1)!

(m− k + 1)!
(m− k + 1)tm−k|∇m−k+1A|2.

Collecting the rest of the terms yields

∂tF ≤ ∆F + (Umr
−2t+m− 2βm)tm−1|∇mA|2 + (Um + βmVm)r−4

with Vm =
∑m

k=1
(m−1)!
(m−k)!Um−k. Choosing sufficiently large βm, we can make the coeffi-

cient of |∇mA|2 negative which implies

∂tF ≤ ∆G+ (Um + βmVm)r−4.

Now we are in the domain of the comparison principle which yields

sup
x∈M

F (x, t) ≤ sup
x∈M

F (x, 0)+(Um+βmVm)r−4t ≤ (βmC0(m−1)!+Um+βmVm)r−2 = Cmr
−2.

This implies the desired bound on tm|∇mA|2 as

tm|∇mA|2 ≤ F ≤ Cmr
−2

for t ∈ [0, r2].

18



1.6. MONOTONICITY FORMULA

Remark. The parabolic nature of the mean curvature flow shows up here as the
dimension of time is double the spatial dimension coming from |∇mA|.

We finish up the proof for the stated long-time existence result.

Proof of Theorem 1.5.1. (Sketch) Assume on the contrary that supMn×[0,T ) |A|2 ≤
C. We aim to show that the manifold X(·, t) = Mt converges to a smooth limit MT as
t→ T . Notice that

|X(x, t)−X(x, 0)| ≤
∣∣∣∣ ∫ t

0
H(x, s)ds

∣∣∣∣ ≤ T sup |H| ≤ T
√
nC0

Moreover, notice that the time derivative of the metric satisfies

|∂t log g(u, u)| =
∣∣∣∣2HA(u, u)

g(u, u)

∣∣∣∣ ≤ 2nC2

for any u ∈ TxM
n. Integrating this we get

e−2nC2T ≤
g(x,t)(u, u)

g(x,0)(u, u)
≤ e2nC

2T

for all (x, t) ∈ M× [0, T ). This proves that metrics at all times are uniformly equivalent.
In fact, integrating from T − ϵ to T will yield that gt converge to a continuous metric
gT which is also uniformly equivalent to metrics at previous times. Notice that Xt are
diffeomorphic by the time translation map of the smooth solution of the mean curvature
flow. Now the higher gradients of X can also be bounded from the bounds of higher
derivatives of the second fundamental form. An Arzela-Ascoli argument now gives the
smooth convergence Xt → XT . Applying short-time existence result at XT we get a
contradiction on the maximal time.

1.6 Monotonicity Formula

Mean curvature flow is invariant under parabolic scaling, i.e. if X : Mn × I → Rn+1

is solution, then so is Xλ(x, t) = λX(x, λ−2t). We construct a weighted area functional
which is invariant under parabolic scaling along any solution to mean curvature flow
which will be monotonous.
Let ρ(x, t) be the backward heat kernel at (X0, t0), i.e.,

ρ(x, t) =
1

(4π(t0 − t))
n
2

· exp
(
−|X(x, t)−X0|2

4(t0 − t)

)
, t < t0

19



CHAPTER 1. INTRODUCTION TO MEAN CURVATURE FLOW

Theorem 1.6.1 (Monotonicity formula). If Mt is a solution of mean curvature flow
for t < t0, then we have the formula

d

dt

∫
Mt

ρ(x, t)dµt = −
∫
Mt

ρ(x, t)

(
H − ⟨X(x, t)−X0, ν⟩

2(t0 − t)

)2

dµt.

Proof. To simplify the formula assume that (X0, t0) = (0, 0). We know that d
dtµt =

−H2µt, so differentiating ρ with respect to time we get,

d

dt

∫
Mt

ρ(x, t)dµt =

∫
Mt

ρ(x, t)(−H2)dµt +

∫
Mt

∂

∂t
ρ(x, t)dµt

= −
∫
Mt

ρ(x, t)H2dµt +

∫
Mt

(
⟨X(x, t), H(x, t)ν⟩

2(−t)
ρ(x, t)

)
dµt

+

∫
Mt

(
n

2(4π)(−t)
(4π)ρ(x, t)− |X(x, t)|2

4(−t)2
ρ(x, t)

)
dµt

=

∫
Mt

ρ

(
n

2(−t)
+

⟨X,Hν⟩
2(−t)

− |X|2

4(−t)2
−H2

)
dµt. (1.6.1)

Now ∆X = −Hν, using this relation for the second term and divergence theorem we
get ∫

Mt

ρ ⟨X,Hν⟩ dµt = −
∫
Mt

ρ ⟨X,∆X⟩ dµt

= −
n+1∑
k=1

∫
Mt

ρXk∆Xkdµt

=
n+1∑
k=1

∫
Mt

⟨∇(ρXk),∇Xk⟩ dµt

=

n+1∑
k=1

∫
Mt

(⟨∇ρ,∇Xk⟩Xk + ρ ⟨∇Xk,∇Xk⟩) dµt. (1.6.2)

Let (U, {xi}) be some local coordinates on the hypersurface. In these coordinates we
can write ∇ρ = gij∂iρ∂j , so ⟨∇ρ,∇Xk⟩ = ∇ρ(Xk) = gij(∂iρ)(∂jXk) which implies

n+1∑
k=1

⟨∇ρ,∇Xk⟩Xk =
n+1∑
k=1

gij(∂iρ)(∂jXk)Xk

= gij(∂iρ) ⟨X, ∂jX⟩

= gijρ

(
−⟨X, ∂iX⟩

2(−t)

)
⟨X, ∂jX⟩

= − ρ

2(−t)
|XT |2 (1.6.3)
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and

n+1∑
k=1

ρ ⟨∇Xk,∇Xk⟩ =
n+1∑
k=1

ρgij(∂iXk)(∂jXk) = ρgij ⟨∂iX, ∂jX⟩ = ρgijgij = nρ. (1.6.4)

Substituting Eq. (1.6.3) and Eq. (1.6.4) into Eq. (1.6.2) and multiplying by 1
2(−t) , we get∫

Mt

ρ
⟨X,Hν⟩
2(−t)

dµt =

∫
Mt

ρ

(
n

2(−t)
− 1

4(−t)2
|XT |2

)
dµt

or ∫
Mt

nρ

2(−t)
dµt =

∫
Mt

ρ

(
⟨X,Hν⟩
2(−t)

+
1

4(−t)2
|XT |2

)
dµt (1.6.5)

where XT denotes the tangential part of the vector X. Substituting Eq. (1.6.5) into
Eq. (1.6.1)

d

dt

∫
Mt

ρ(x, t)dµt =

∫
Mt

ρ

(
⟨X,Hν⟩
(−t)

− |X|2

4(−t)2
−H2 +

1

4(−t)2
|XT |2

)
dµt

= −
∫
Mt

ρ

(
H − ⟨X, ν⟩

2(−t)

)2

dµt.

1.6.1 Rescaled Monotonicity formula

Applying the comparison principle on the time evolution of |A|2 we get that if the
curvature blows up at the maximal time T and satisfies the inequality

max
p∈M

|A(p, t)| ≥ 1√
2(T − t)

.

Using this we define the type I singularity if the blow-up rate is bounded by a con-
stant.

Definition 1.6.1. Let T be the maximal time of existence of a mean curvature flow.
If there exists a constant C > 1 such that

max
p∈M

|A(p, t)| ≤ C√
2(T − t)

we say the flow is developing at time T a type I singularity. Conversely, if such
a constant does not exist, that is

lim sup
t→T

max
p∈M

|A(p, t)|
√
T − t = ∞

we say that we have a type II singularity.
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CHAPTER 1. INTRODUCTION TO MEAN CURVATURE FLOW

We will restrict ourselves to type I singularity for the rest of this section. We want
to rescale Mt near a singular point as t → T , such that the curvature of the rescaled
surfaces remains uniformly bounded. Using the inequality |H| ≤

√
n|A|,

|X(p, t)−X(p, s)| ≤
∫ t

s
|H(p, τ)|dτ ≤

√
nC
[
(T − s)1/2 − (T − t)1/2

]
for all p ∈ Mn and 0 ≤ s < t < T . Thus, X(·, t) converges uniformly as t → T . Using
this we define a blow-up point as follows

Definition 1.6.2. We say that x ∈ Rn+1 is a blow-up point if there is p ∈ Mn

such that X(p, t) → x as t→ T and |A|(p, t) becomes unbounded as t→ T .

Let us assume now that 0 ∈ Rn+1 is a blow-up point. Then we define the rescaled
immersions X̃(p, s) by

X̃(p, s) = (2(T − t))−1/2X(p, t), s(t) = −1

2
log(T − t). (1.6.6)

The surfaces M̃s = X̃(·, s) (Mn) are therefore defined for −1
2 log T ≤ s < ∞ and

satisfy the equation
d

ds
X̃(p, s) = H̃(p, s)ν̃(p, s) + X̃(p, s).

For any tensor P , let P̃ denote the rescaled tensor. We say that P has degree α if
P̃ = (2(T − t))−

α
2 P . Then there is an expression evaluating the evolution of rescaled

tensor.

Lemma 1.6.2. Suppose P is a tensor that satisfies

dP

dt
= ∆P +Q

for the original evolution equation and P has degree α. Then Q has degree (α− 2)
and

dP̃

ds
= ∆̃P̃ + Q̃+ αh̃P̃

For finding out the evolution of the second fundamental form and mean curvature
after rescaling, we use this lemma to get.

Proposition 1.6.3. For each m ≥ 0 there is a C(m) <∞ such that |∇̃mÃ|2 ≤ C(m)
holds on M̃s uniformly in s, where C(m) depends on n,m,C0 and M0.
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Proof. One can calculate the degree of |∇mA|2 = −2(m + 1) from Eq. (1.5.4) and
further we know that

∂s|∇̃mÃ|2 ≤ ∆|∇̃mÃ|2 − 2|∇̃m+1Ã|2 + C̃n,m

∑
i+j+k=m

|∇̃iÃ||∇̃jÃ||∇̃kÃ||∇̃mÃ|

We induct on m. For m = 0, the rescaled second fundamental form under the type I
condition satisfies

|Ã|2 = 2(T − t)|A| ≤ C

Assume the result holds for 0, . . . ,m − 1. Then for m there exists a constant B such
that

∂

∂s
|∇̃mÃ|2 ≤ ∆̃|∇̃mA|2 +B(1 + |∇̃A|2)

Adding the Eq. (1.5.4) for m− 1,

∂

∂s
(|∇̃mÃ|2 +B|∇̃m−1Ã|2) ≤ ∆̃(|∇̃mÃ|2 +B|∇̃m−1Ã|2)−B|∇̃mÃ|2 +B1

where B1 depends on B and C̃n,l for l = 0, . . . ,m−1. Now from the induction hypothesis
|∇̃Ã|2 is bounded so from maximum principles in the previous estimate we can bound
|∇̃Ã|2 by a constant depending on initial data, B and B1. This completes the induction.

After the same rescaling the backward heat kernel becomes

ρ̃(p, s) = exp

(
−1

2
|X̃(p, s)|2

)
which leads to the following corollary.

Corollary. Let X̃s denote the rescaled hypersurfaces by the Eq. (1.6.6), then the
corresponding monotonicity formula is

d

ds

∫
X̃s

ρ̃dµ̃s = −
∫
X̃s

ρ̃
(
H̃ −

〈
X̃, ν̃

〉)2
dµ̃s.

Proof. We use the fact that dµ̃
ds = (n−H2)µ̃s and calculate the derivative analogous to

the proof in Theorem 1.6.1.

One application of the estimates of the rescaled second fundamental form and rescaled
monotonicity formula is to obtain a structural formula of type I singularity. This was
proved by Huisken in [Hui90].
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Theorem 1.6.4. Let X : Mn × [0, T ) → Rn+1 be a maximal solution of mean
curvature flow with type I singularity. Let X̃s denote the rescaled hypersurfaces
with the origin as the blow-up point. Then for each sequence sj → ∞ there exists
a subsequence sjk such that X̃sjk

converges smoothly to an immersed non-empty

limiting surface X̃∞ which satisfies

H =
〈
X̃∞, ν

〉
.

Further, if X̃∞ is compact, then is a sphere of radius
√
n.
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2 Convexity estimates

As observed in the previous chapter the mean curvature flow preserves convexity and
mean convexity. In this chapter, we would like to study the convexity of the hypersurface
as it approaches singularity via a blow-up method. Huisken and Sinestrari proved in
[HS99a, HS99b] that mean convex hypersurface are asymptotically convex i.e. blowing
the flow near singularity gives a convex ancient solution.

2.1 Elementary symmetric polynomials and cones

The mean curvature of a hypersurface at a point is the sum of principal curvatures
which is a symmetric function. Similarly, Gauss curvature is the product of the principal
curvatures. The study of elementary symmetric functions of principal curvatures will be
crucial to analyze the convexity of singularities. We begin by recalling the definition of
elementary symmetric polynomials.

Definition 2.1.1. For any k = 1, . . . , n, the k-th elementary symmetric poly-
nomial Sk : Rn → R is defined by

Sk(λ) =
∑

1≤i1<i2<···<ik≤n

λi1λi2 · · ·λik

where λ = (λ1, . . . , λn) ∈ Rn with the convention S0 ≡ 1.

Associated to each k we can also define the domain of positivity of first k elementary
symmetric polynomials Γk given by

Γk = {λ ∈ Rn : S1(λ) > 0, . . . , Sk(λ) > 0}

It is easy to see that Γk are cones in the Euclidean space and satisfy Γk+1 ⊂ Γk. In
this formulation a hypersurface is mean-convex if the vector (κ1, . . . , κn) is in Γ1. The
following proposition was proved in [HS99a] regarding the cones Γk.

Proposition 2.1.1. Let A = {x ∈ Rn : x1 > 0, . . . , xn > 0} denote the positive cone.
The sets Γk coincide with the connected component of the domain {λ ∈ Rn+1 :
Sk(λ) > 0} containing the positive cone A. Further, the cone Γn coincides with the
positive cone A.
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This establishes a hierarchy of convexity with the last one being uniformly convex where
the principal curvature vector (κ1, . . . , κn) ∈ Γn for all points in the hypersurface. The
main result of the chapter is the following theorem.

Theorem 2.1.2. Let X : Mn × [0, T ) → Rn+1 be a smooth solution of the mean
curvature flow with n ≥ 2 such that X(Mn, 0) = M0 is compact and of positive
mean curvature. Then, for any η > 0 there exists a constant Cη > 0 depending only
on n, η and M0 such that

Sk ≥ −ηHk − Cη,k (2.1.1)

on Mt for any t ∈ [0, T ).

This can be interpreted as following - the negative part of Sk becomes very small
compared because of the inhomogeneous factor η at points where Hk is large(i.e. where
the singularities are developing). We will only prove the theorem for k = 2 adapted from
[HS99b]. A complete proof is done using induction in [HS99a].

2.2 Estimate of S2

For any η ∈ R and σ ∈ [0, 2] let

gσ,η =

(
|A|2

H2
− (1 + η)

)
Hσ =

|A|2 − (1 + η)H2

H2−σ
=

−2S2 − ηH2

H2−σ
.

Our aim is to derive a uniform bound of gσ,η which using Young’s inequality will imply
the desired estimate. The proof of Theorem 2.1.2 for k = 2 is divided into two parts. The
first part is obtaining an Lp estimate of gσ,η and the second part is utilizing Stampacchia
lemma using Michael-Simon inequality in order to get an L∞ bound. In order to prove
the first part we derive the evolution equation of gσ,η using the product rule but before
that we need the following lemmas.

Lemma 2.2.1. The following equality holds:

|∇A ·H −∇H ⊗A|2 = |∇A|2H2 + |A|2|∇H|2 −
〈
∇|A|2,∇H

〉
H. (2.2.1)

Proof. Computing the norm,

|∇A ·H −∇H ⊗A|2 = ⟨∇A ·H −∇H ⊗A,∇A ·H −∇H ⊗A⟩
= |∇A|2H2 + |∇H|2|A|2 − 2H ⟨∇A,∇H ⊗A⟩
= |∇A|2H2 + |∇H|2|A|2 −

〈
∇|A|2,∇H

〉
H.
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Lemma 2.2.2. The quantity
|A|2

H2
satisfies the differential equation

∂

∂t

|A|2

H2
= ∆

|A|2

H2
+

2

H

〈
∇H,∇|A|2

H2

〉
− 2

H4
|∇A ·H −∇H ⊗A|2. (2.2.2)

Proof. Computing the time derivative we get

∂

∂t

|A|2

H2
=

1

H2

∂|A|2

∂t
− 2

|A|2

H3

∂H

∂t

=
1

H2

(
∆|A|2 − 2|∇A|2 + 2|A|4

)
− 2

|A|2

H3

(
∆H + |A|2H

)
=

∆|A|2

H2
− 2

|∇A|2

H2
− 2|A|2∆H

H3
.

Recall the division formula for Laplacian,

∆
(u
v

)
=

∆u

v
− u

∆v

v2
− 2

v2
⟨∇u,∇v⟩+ 2

u

v3
|∇v|2.

Calculating the Laplace-Beltrami operator using this,

∆
|A|2

H2
=

∆|A|2

H2
− |A|2∆H

2

H4
− 2

H4

〈
∇|A|2,∇H2

〉
+

2|A|2

H6
|∇H2|2

=
∆|A|2

H2
− |A|2

(
2H∆H + 2|∇H|2

H4

)
− 2

H4

〈
∇|A|2, 2H∇H

〉
+ 8

|A|2

H6
|∇H|2

=
∆|A|2

H2
− 2|A|2∆H

H3
+ 6|A|2 |∇H|2

H4
− 4

H3

〈
∇|A|2,∇H

〉
which substituted in the time derivative gives

∂

∂t

|A|2

H2
= ∆

|A|2

H2
− 6|A|2 |∇H|2

H4
+

4

H3

〈
∇|A|2,∇H

〉
− 2

|∇A|2

H2

= ∆
|A|2

H2
+

2

H

〈
∇H, ∇|A|2

H2
− 2

H3
|A|2∇H

〉
− 2

H4

(
|A|2|∇H|2 + |∇A|2H2 −H

〈
∇|A|2,∇H

〉)
= ∆

|A|2

H2
+

2

H

〈
∇H,∇|A|2

H2

〉
− 2

H4
|∇A ·H −∇H ⊗A|2.

Using this we compute the time derivative of gσ,η.
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Lemma 2.2.3. The evolution equation of gσ,η is given by

∂gσ,η
∂t

=∆gσ,η + 2
(1− σ)

H
⟨∇H,∇gσ,η⟩ −

σ(1− σ)

H2
gσ,η|∇H|2

− 2

H4−σ
|∇A ·H −∇H ⊗A|2 + σ|A|2gσ,η. (2.2.3)

Proof. We can write gσ,η =
(
|A|2
H2 − (1 + η)

)
Hσ so

∂gσ,η
∂t

=

{
∆
|A|2

H2
+

2

H

〈
∇H,∇|A|2

H2

〉
− 2

H4
|∇A ·H −∇H ⊗A|2

}
Hσ

+

(
|A|2

H2
− (1 + η)

)(
∆Hσ − σ(σ − 1)Hσ−2|∇H|2 + σ|A|2Hσ

)
= ∆gσ,η + 2

(1− σ)

H

〈
∇H,∇|A|2

H2

〉
Hσ − σ(σ − 1)

H2
gσ,η|∇H|2

− 2

H4−σ
|∇A ·H −∇H ⊗A|2 + σ|A|2gσ,η

= ∆gσ,η + 2
(1− σ)

H

(
⟨∇H,∇gσ,η⟩ −

σ

H
gσ,η|∇H|2

)
− σ(σ − 1)

H2
gσ,η|∇H|2

− 2

H4−σ
|∇A ·H −∇H ⊗A|2 + σ|A|2gσ,η

= ∆gσ,η + 2
(1− σ)

H
⟨∇H,∇gσ,η⟩ −

σ(1− σ)

H2
gσ,η|∇H|2

− 2

H4−σ
|∇A ·H −∇H ⊗A|2 + σ|A|2gσ,η.

Applying the maximum principle on Lemma 2.2.2 gets that |A|2
H2 is uniformly bounded

so there exists a positive constant depending only on M0 such that

|A|2 ≤ c̃0H
2 on Mt,

for all time t ∈ [0, T ). This also implies gσ,η ≤ c0H
σ but asH blows up this isn’t sufficient

to prove the uniform bound. The following estimate of the good term in Eq. (2.2.3) will
be required for the Lp estimate.

Lemma 2.2.4. [HS99b] If (1 + η)H2 ≤ |A|2 ≤ c0H
2 for some η, c0 > 0. Then

1. −2Z ≥ ηH2|A|2

2. |∇A ·H −∇H ⊗A|2 ≥ η2

4n(n−1)2c0
H2|∇H|2

For the rest of proof we will restrict η, σ ∈ (0, 1) and ci will denote a constant depend-
ing only on n, η and M0. For brevity, we will write g = gσ,η as long as σ, η is fixed. Let
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g+ = max{g(x, t), 0} denote the positive part of g. Then gp+ ∈ C1(M× [0, T )) for p > 1
and

∂tg
p
+ = pgp−1

+ ∂tg, ∇(gp+) = pgp−1
+ ∇g.

Lemma 2.2.5. There exists constant c2, c3 such that

d

dt

∫
M
gp+dµ ≤− p(p− 1)

2

∫
M
gp−2
+ |∇g|2dµ− p

c3

∫
M

gp−1
+

H2−σ
|∇H|2dµ

− p

∫
M

gp−1
+

H4−σ
|∇A ·H −∇H ⊗A|2dµ+ pσ

∫
M

|A|2gp+dµ (2.2.4)

for any p ≥ c2.

Proof. Differentiating with respect to time and using Lemma 2.2.3 for p ≥ 2

d

dt

∫
M
gp+dµ =

∫ (
pgp−1

+ ∂tg −H2gp+

)
dµ

≤
∫
pgp−1

+

(
∆g + 2

(1− σ)

H
⟨∇H,∇g⟩ − 2

H4−σ
|∇A ·H −∇H ⊗A|2

)
dµ

+ p

∫
σ|A|2gp+dµ (2.2.5)

Using integration by parts,∫
pgp−1

+ ∆gdµ = −p
∫ 〈

∇gp−1
+ ,∇g

〉
dµ

= −p(p− 1)

∫
gp−2
+ |∇g|2dµ (2.2.6)

Also from Lemma 2.2.4 we deduce that if c1 ≥ 4n(n− 1)2c0η
−2

gp−1
+

H4−σ
|∇A ·H −∇H ⊗A|2 ≥

gp−1
+

c1H2−σ
|∇H|2

≥
gp−1
+

2c1H2−σ
|∇H|2 + 1

2c0c1

gp+
H2

|∇H|2 (2.2.7)

To handle the gradient term, let p ≥ max{2, 1 + 4c0c1} to obtain

2(1− σ)p
gp−1
+

H
⟨∇H,∇g⟩ ≤ 2p

gp−1
+

H
|∇H||∇g|

≤ p

2c0c1

gp+
H2

|∇H|2 + 2c0c1pg
p−2
+ |∇g|2 [Peter-Paul inequality]

≤ p
gp−1
+

H4−σ
|∇A ·H −∇H ⊗A|2 − p

gp−1
+

2c1H2−σ
|∇H|2

+
p(p− 1)

2
gp−2
+ |∇g|2 [Using Eq. (2.2.7)]
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Substituting this back in Eq. (2.2.5) and using integration by parts from Eq. (2.2.6),

d

dt

∫
M
gp+dµ ≤− p(p− 1)

∫
gp−2
+ |∇g|2dµ+ p

∫
gp−1
+

H4−σ
|∇A ·H −∇H ⊗A|2dµ

+
p(p− 1)

2

∫
gp−2
+ |∇g|2dµ− p

c3

∫
gp−1
+

H2−σ
|∇H|2dµ

− 2p

∫
gp−1
+

H4−σ
|∇A ·H −∇H ⊗A|2dµ+ pσ

∫
|A|2gp+dµ

which gives the desired inequality with c3 =
1
2c1

.

To handle the bad positive term appearing in Eq. (2.2.4) we use the following lemma

Lemma 2.2.6. There exists a constant c4 such that

1

c4

∫
|A|2gp+dµ ≤

(
p+

p

β

)∫
gp−2
+ |∇g|2 + (1 + βp)

∫
gp−1
+

H2−σ
|∇H|2dµ

+

∫
gp−1
+

H4−σ
|∇A ·H −∇H ⊗A|2dµ

for any β > 0, p > 2.

Proof. The Laplacian-Beltrami operator satisfies,

∆(fσ) = σfσ−1∆f + σ(σ − 1)fσ−2|∇f |2

We have an expression for the Laplacian of |A|2
H2 in Lemma 2.2.2 from which it follows
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that

∆g = ∆

(
|A|2

H2

)
Hσ +

(
|A|2

H2
− (1 + η)

)
∆Hσ + 2

〈
∇|A|2

H2
,∇Hσ

〉
=

(
∆|A|2

H2
− 2|A|2∆H

H3
+ 6|A|2 |∇H|2

H4
− 4

H3

〈
∇|A|2,∇H

〉)
Hσ

+

(
|A|2

H2
− (1 + η)

)(
σHσ−1∆H + σ(σ − 1)Hσ−2|∇H|2

)
+ 2σHσ−1

〈
∇|A|2

H2
− 2

|A|2

H3
∇H,∇H

〉
=

∆|A|2

H2−σ
+

(
(σ − 2)

|A|2

H3−σ
− σ(1 + η)Hσ−1

)
∆H + 6

|A|2

H4−σ
|∇H|2 − 4

H3−σ

〈
∇|A|2,∇H

〉
+ σ(σ − 1)

g

H2
|∇H|2 + 2σ

H3−σ

〈
∇|A|2,∇H

〉
− 4σ

|A|2

H4−σ
|∇H|2

=
∆|A|2

H2−σ
+
(
(σ − 2)

g

H
− 2(1 + η)Hσ−1

)
∆H + (6− 4σ)

|A|2

H4−σ
|∇H|2

− 2

H4−σ
H
〈
∇|A|2,∇H

〉
+ σ(σ − 1)

g

H2
|∇H|2 + 2(σ − 1)

H3−σ

〈
∇|A|2,∇H

〉
=

∆|A|2

H2−σ
+
(
(σ − 2)

g

H
− 2(1 + η)Hσ−1

)
∆H + (6− 4σ)

|A|2

H4−σ
|∇H|2

− 2

H4−σ

(
|∇A|2H2 + |A|2|∇H|2 − |∇A ·H −∇H ⊗A|2

)
+ σ(σ − 1)

g

H2
|∇H|2

+
2(σ − 1)

H3−σ

〈
∇|A|2,∇H

〉
=

∆|A|2 − 2|∇A|2

H2−σ
+

2

H4−σ
|∇A ·H −∇H ⊗A|2 +

(
(σ − 2)

g

H
− 2(1 + η)Hσ−1

)
∆H

− 4(σ − 1)
|A|2

H4−σ
|∇H|2 + σ(σ − 1)

g

H2
|∇H|2 + 2(σ − 1)

H3−σ

〈
∇|A|2,∇H

〉
.

Now similar to time derivative in Lemma 2.2.3, we calculate inner product of ∇g with
∇H,

⟨∇g,∇H⟩ =
〈
∇|A|2

H2
,∇H

〉
Hσ + σ

(
|A|2

H2
− (1 + η)

)
Hσ−1|∇H|2

=

〈
∇|A|2

H2
,∇H

〉
Hσ − 2

|A|2

H3−σ
|∇H|2 + σ

g

H
|∇H|2.

Using Simon’s identity and the previous expression to eliminate the last mixed inner
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product term

∆g =
∆|A|2 − 2|∇A|2

H2−σ
+

2

H4−σ
|∇A ·H −∇H ⊗A|2 +

(
(σ − 2)

g

H
− 2(1 + η)Hσ−1

)
∆H

− 4(σ − 1)
|A|2

H4−σ
|∇H|2 + σ(σ − 1)

g

H2
|∇H|2

+
2(σ − 1)

H

(
⟨∇g,∇H⟩+ 2

|A|2

H3−σ
|∇H|2 − σ

g

H
|∇H|2

)
=

2 ⟨hij ,∇i∇jH⟩+ 2Z

H2−σ
+

2

H4−σ
|∇A ·H −∇H ⊗A|2 +

(
(σ − 2)

g

H
− 2(1 + η)Hσ−1

)
∆H

− σ(σ − 1)
g

H2
|∇H|2 + 2(σ − 1)

H
⟨∇g,∇H⟩ (2.2.8)

Recall Green’s identity for compact manifold without boundary,∫
M
u∆v = −

∫
M

⟨∇u,∇v⟩ .

Multiplying Eq. (2.2.8) by gp+H
−σ and using Green’s identity the left-hand side evaluates

to

A =

∫
gp+H

−σ∆gdµ = −
∫ 〈

∇(gp+H
−σ),∇g

〉
dµ

= −p
∫

1

Hσ
gp−1
+ |∇g|2dµ+ σ

∫
gp+
H1+σ

⟨∇g,∇H⟩ dµ (2.2.9)

while the right-hand side is

B =2

∫ ⟨hij ,∇i∇jH⟩ gp+
H2

dµ+ 2

∫
gp+Z

H2
dµ+ 2

∫
gp+
H4

|∇A ·H −∇H ⊗A|2dµ

+ (σ − 2)

∫
gp+1
+

H1+σ
∆Hdµ− 2(1 + η)

∫
gp+
H

∆Hdµ− σ(σ − 1)

∫
gp+1
+

H2+σ
|∇H|2dµ

+ 2(σ − 1)

∫
gp+1
+

H1+σ
⟨∇g,∇H⟩ dµ (2.2.10)

For the first term of Eq. (2.2.10) we can use divergence-type theorem for tensors to
get,

2

∫ ⟨hij ,∇i∇jH⟩ gp+
H2

dµ = −2

∫ 〈
trik

(
∇k

(
gp+hij

H2

))
,∇jH

〉
dµ

= −2p

∫
gp−1
+

H2

〈
∇ig ⊗ hij ,∇jH

〉
dµ

+ 4

∫
gp+
H3

〈
∇iH ⊗ hij ,∇jH

〉
dµ− 2

∫
gp+
H2

〈
∇ihij ,∇jH

〉
dµ

(2.2.11)
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Using Codazzi equation ∇ihij = ∇jh
i
i for the last term,

2

∫ ⟨hij ,∇i∇jH⟩ gp+
H2

dµ = −2p

∫
gp−1
+

H2
⟨hij ,∇ig∇jH⟩ dµ

+ 4

∫
gp+
H3

⟨hij ,∇iH∇jH⟩ dµ− 2

∫
gp+
H2

|∇H|2dµ (2.2.12)

Applying Green’s formula on ∆H terms in Eq. (2.2.10) and putting together Eq. (2.2.9),
Eq. (2.2.10) and Eq. (2.2.12)

− p

∫
1

Hσ
gp−1
+ |∇g|2dµ+ σ

∫
gp+
H1+σ

⟨∇g,∇H⟩ dµ

1

= −2p

∫
gp−1
+

H2
⟨hij ,∇ig∇jH⟩ dµ+ 4

∫
gp+
H3

⟨hij ,∇iH∇jH⟩ dµ− 2

∫
gp+
H2

|∇H|2dµ

2

+ 2

∫
gp+Z

H2
dµ+ 2

∫
gp+
H4

|∇A ·H −∇H ⊗A|2dµ− (σ − 2)(p+ 1)

∫
gp+
H1+σ

⟨∇g,∇H⟩ dµ

1

+ (σ − 2)(1 + σ)

∫
gp+1
+

H2+σ
|∇H|2dµ

3

+2(1 + η)p

∫
gp−1
+

H
⟨∇g,∇H⟩ dµ

− 2(1 + η)

∫
gp+
H2

|∇H|2dµ

2

−σ(σ − 1)

∫
gp+1
+

H2+σ
|∇H|2dµ

3

+2(σ − 1)

∫
gp+1
+

H1+σ
⟨∇g,∇H⟩ dµ

1

clubbing the terms with same-numbered under bracket,

−2

∫
gp+Z

H2
dµ = p

∫
1

Hσ
gp−1
+ |∇g|2dµ− 2p

∫
gp−1
+

H2
⟨hij ,∇ig∇jH⟩ dµ

+ 4

∫
gp+
H3

⟨hij ,∇iH∇jH⟩ dµ+ 2

∫
gp+
H4

|∇A ·H −∇H ⊗A|2dµ

+ p

∫ (
(2− σ)

gp+
H1+σ

+ 2(1 + η)
gp−1
+

H

)
⟨∇g,∇H⟩ dµ

− 2

∫ (
gp+1
+

H2+σ
+ (2 + η)

gp+
H2

)
|∇H|2dµ (2.2.13)

From Lemma 2.2.4 −2Z ≥ ηH2|A|2 and using utilizing g ≤ c0H
σ (and |A| ≤ c0H)

with Cauchy-Schwarz inequality in Eq. (2.2.13),
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η

∫
gp+|A|2dµ ≤ c0p

∫
gp−2
+ |∇g|2dµ+ 4p(c0 + 1)

∫
gp−1
+

H
|∇g||∇H|dµ

+ 4c20

∫
gp−1
+

H2−σ
|∇H|2dµ+ 2c0

∫
gp−1
+

H4−σ
|∇A ·H −∇H ⊗A|2dµ

(2.2.14)

Also, for any β > 0,

2
gp−1
+

H
|∇H||∇g| ≤

gp−2
+

β
|∇g|2 + β

gp+
H2

|∇H|2

=
gp−2
+

β
|∇g|2 + c0β

gp−1
+

H2−σ
|∇H|2 (2.2.15)

Combining Eq. (2.2.13), Eq. (2.2.14) and Eq. (2.2.15) proves the lemma.

Proposition 2.2.7. For any η ∈ (0, 1) there exists constants c5, c6 such that the
Lp(M) norm of (gσ,η)+ is a increasing function of t if the following holds

p ≥ c5, σ ≤ (c6p)
− 1

2 .

Proof. Choose β ∼ p−
1
2 and σ ∼ cp−

1
2 in the previous lemma.

Lemma 2.2.8 (Stampacchia lemma). Let ψ : [k0,∞) → R be a non-negative, non-
increasing function which satisfies

ψ(h) ≤ C

(h− k)α
ψ(k)β for all h > k > k0 (2.2.16)

for some constants C > 0, α > 0 and β > 1. Then

ψ(k0 + d) = 0, (2.2.17)

where dα = Cψ(k0)
β−12

αβ
β−1 .

We complete the proof of Theorem 2.1.2 using Stampacchia lemma which gives an L∞

bound from the Lp bounds.

Proof. Let k ≥ k0, where

k0 = sup
σ∈[0,1]

sup
M0

gσ,η
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Define v = (gσ,η − k)
p
2
+ and A(k, t) = {x ∈ Mt : v(x, t) > 0}. Differentiating v2 with

respect to time we get for p large enough (similar to Lemma 2.2.5)

d

dt

∫
Mt

v2dµ+

∫
Mt

|∇v|2dµ ≤ σp

∫
Mt

|A|2v2dµ ≤ c0σp

∫
A(k,t)

H2gpσ,ηdµ (2.2.18)

Also from the Michael-Simon result in [MS73], we have a Sobolev-type inequality given
by(∫

Mt

v2qdµ

) 1
q

≤ C(n)

∫
Mt

|∇v|2dµ+ C(n)

(∫
A(k,t)

Hndµ

) 2
n (∫

Mt

v2qdµ

) 1
q

(2.2.19)

where q = n
n−2 if n > 2 and an arbitrary number greater than 1 if n = 2. We can

estimate the Hn factor in the integral on A(k, t) using the previous proposition and the
equality ∫

Mt

Hngpσ,ηdµ =

∫
Mt

gpσ′,ηdµ

where σ′ = σ + n
p . Let

p ≥ max{c5, 4n2c6} and σ ≤ (4c6p
− 1

2 )

so that

σ′ = σ +
n

p
≤ 1

2
√
c6p

+
1
√
p

n
√
p
≤ 1

√
c6p

which allows us to use Proposition 2.2.7,(∫
A(k,t)

Hndµ

) 2
n

≤

(∫
A(k,t)

Hn

(
gpσ,η
kp

)
dµ

) 2
n

= k−
2p
n

(∫
A(k,t)

gpσ′,ηdµ

) 2
n

≤ k−
2p
n

(∫
Mt

(gσ′,η)
p
+dµ

) 2
n

≤ k−
2p
n

(∫
M0

(gσ′,η)
p
+dµ

) 2
n

≤
(
|M0|k0
k

) 2p
n

We can fix k1 > k0 such that for any k ≥ k1 the term
∫
A(k,t)H

ndµ in Eq. (2.2.19) is less

than 1
2C(n) . For such k, using Eq. (2.2.18) with Eq. (2.2.19) to eliminate the gradient

term,

d

dt

∫
Mt

v2dµ+
1

2C(n)

(∫
Mt

v2qdµ

) 1
q

≤ c0σp

∫
A(k,t)

H2gpσ,ηdµ. (2.2.20)
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Let t0 ∈ [0, T ] be the time when supt∈[0,T )

∫
Mt

v2dµ is attained (we let t0 = T if it is
not attained in the interior). Integrating Eq. (2.2.20) from 0 to t0,∫

Mt0

v2dµ+
1

2C(n)

∫ t0

0

(∫
Mt

v2qdµ

) 1
q

dt ≤ c0σp

∫ t0

0

∫
A(k,t)

H2gpσ,ηdµdt (2.2.21)

where we used the fact that k > k0 ≥ supM0
gσ,η so

∫
M0

v2dµ = 0. Now integrating
Eq. (2.2.20) from t0 to T − ϵ for ϵ small enough,∫
MT−ϵ

v2dµ−
∫
Mt0

v2dµ+
1

2C(n)

∫ T−ϵ

t0

(∫
Mt

v2q
) 1

q

dt ≤ c0σp

∫ T−ϵ

t0

∫
A(k,t)

H2gpσ,ηdµdt.

(2.2.22)
Throwing away

∫
MT−ϵ

v2dµ term and adding Eq. (2.2.21) to half of Eq. (2.2.22) after

taking the limit ϵ→ 0,

1

2

∫
Mt0

v2dµ+
1

4C(n)

∫ T

0

(∫
Mt

v2q
) 1

q

dt ≤ c0σp

∫ T

0

∫
A(k,t)

H2gpσ,ηdµdt

which is same as

sup
[0,T )

∫
Mt

v2dµ+

∫ T

0

(∫
Mt

v2qdµ

) 1
q

dt ≤ 2max{1, 2C(n)}c0σp
∫ T

0

∫
A(k,t)

H2gpσ,ηdµdt.

(2.2.23)
Recall the interpolation inequality for Lp spaces for any f ∈ Lq ∩ Lr,

||f ||q0 ≤ ||f ||αq ||f ||1−α
r

where 1
q0

= α
q + 1−α

q and 1 < q0 < q. Setting r = 1, α = 1
q0

and f = v2 we get(∫
Mt

v2q0dµ

) 1
q0

≤
(∫

Mt

v2qdµ

) 1
q0q
(∫

Mt

v2dµ

)1− 1
q0

. (2.2.24)

Integrating this in time and using Young’s inequality,(∫ T

0

∫
A(k,t)

v2q0dµdt

) 1
q0

≤

(
sup
[0,T )

∫
A(k,t)

v2dµ

)1− 1
q0

∫ T

0

(∫
A(k,t)

v2qdµ

) 1
q

dt


1
q0

≤
sup[0,T )

∫
A(k,t) v

2dµ
q0

q0−1

+

∫ T
0

(∫
A(k,t) v

2qdµ
) 1

q
dt

q0

≤ sup
[0,T )

∫
A(k,t)

v2dµ+

∫ T

0

(∫
A(k,t)

v2qdµ

) 1
q

dt

≤ c8σp

∫ T

0

∫
A(k,t)

H2gpσ,ηdµdt
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where c8 = 2max{1, 2C(n)}c0. Set ψ(k) =
∫ T
0

∫
A(k,t) dµdt. We will obtain bounds on

ψ which along with the Stampacchia lemma will imply a uniform bound of gσ,η. Now
Eq. (2.2.23) and Hölder inequality yields,

∫ T

0

∫
A(k,t)

v2dµdt ≤

(∫ T

0

∫
A(k,t)

1dµdt

)1− 1
q0

(∫ T

0

∫
A(k,t)

v2q0dµdt

) 1
q0

(2.2.25)

≤ c8σpψ(k)
1− 1

q0

∫ T

0

∫
A(k,t)

H2gpσ,ηdµdt (2.2.26)

Let r > 1 which will be chosen later. Applying Hölder again on the right side with
weights r and r

r−1 ,∫ T

0

∫
A(k,t)

H2gpσ,ηdµdt ≤

(∫ T

0

∫
A(k,t)

dµdt

)1− 1
r
(∫ T

0

∫
A(k,t)

H2rgprσ,ηdµdt

) 1
r

= ψ(k)1−
1
r

(∫ T

0

∫
A(k,t)

gprσ′′,ηdµdt

) 1
r

where σ′′ = σ + 2
p . For r large enough and p, σ−1 small enough from Proposition 2.2.7

there exists a constant c9 > 0 independent of time such that∫ T

0

∫
A(k,t)

H2gpσ,ηdµdt ≤ c
1
r
9 ψ(k)

1− 1
r . (2.2.27)

Combining Eq. (2.2.26) and Eq. (2.2.27) for all h > k ≥ k1, we have

(h− k)pψ(h) =

∫ T

0

∫
A(h,t)

(h− k)pdµdt

≤
∫ T

0

∫
A(k,t)

v2dµdt

≤ c8σpc
1
r
9 ψ(k)

2− 1
r
− 1

q0 .

Let γ = 2− 1
r −

1
q0

and c10 = c8c
1
r
9 . Fix r >

q0
q0−1 (so γ > 1) and p large enough, σ small

enough while satisfying the hypothesis of Proposition 2.2.7 such that σp < 1 then gives

ψ(h) ≤ c10
(h− k)p

ψ(k)γ (2.2.28)

Stampacchia lemma now implies ψ(k) = 0 for all k ≥ k1+d where d
p = c102

γp
γ−1

+1
ψ(k1)

γ−1.
Hence,

gσ,η ≤ k1 + d ≤ K := k1 + c102
γp
γ−1

+1
(|M0|T )γ−1

or
|A|2 − (1 + η)H2 ≤ KH2−σ
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so by Young’s inequality there exists a constant Cη such that,

|A|2 −H2 ≤ ηH2 +KH2−σ ≤ 2ηH2 + 2Cη.

Notice that |A|2 −H2 = −
∑

i ̸=j κiκj = −2S2 which implies the desired estimate.

2.3 Asymptotic convexity

As mentioned in Section 1.6.1, we classify the singularities based on the blow-up rate
of |A|2. Recall from maximum principle on Lemma 2.2.2 there exists a c0 such that
|A|2 ≤ c0H

2 and from algebra we get H2 ≤ n|A|2 so |A|2 and H2 have same rate of
growth. We will focus on the growth of H2.

The estimates obtained in the previous section will be very useful to obtain an asymp-
totic analysis of type II singularities. Following [HS99b] suppose a maximal solution
X : M × [0, T ) → Rn+1 develops a type II singularity. Choose a sequence of points
{(xm, tm)} in spacetime as follows. For each integer m ≥ 1, let tm ∈ [0, T − 1

m ], xm ∈M
such that

H2(xm, tm)

(
T − 1

m
− tm

)
= sup

(x,t)∈M×[0,T− 1
m ]
H2(x, t)

(
T − 1

m
− t

)
(2.3.1)

Set Lm = H(xm, tm), αm = −L2
mtm and ωm = L2

m(T − 1
m − tm).

Lemma 2.3.1. For singularities of type II, the following holds as m→ ∞,

tm → T, Lm → ∞, αm → −∞, and ωm → ∞.

Proof. Fix M > 0. As the singularity is of type II, there exists a tM ∈ [0, T ) and
xM ∈ M such that H2(xM , tM )(T − tm) > 2M . For m large enough we have

t̄ < T − 1/m, H2(x̄, t̄)(T − t̄− 1/m) > M.

It follows

ωm = H2 (xm, tm) (T − tm − 1/m) ≥ H2(x̄, t̄)(T − t̄− 1/m) > M.

Now we will rescale the hypersurfaces to analyze the limiting behavior. For each m ≥ 1,
define a family of immersions by

Xm(x, t) = Lm(X(x, L−2
m t+ tm)−X(xm, tm)) for t ∈ [αm, ωm].

Let Am and Hm denote the fundamental form of the rescaled immersions. Then by the
definition of Lm and Xm we have

Xm(xm, 0) = 0 and Hm(xm, 0) = 1.
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Further, observe that

H2
m(x, t) = L−2

m H2(x, L−2
m t+ tm) ≤

T − 1
m − tm

T − 1
m − tm − L−2

m t
=

ωm

ωm − t
.

From the previous lemma ωm → ∞, so for any ϵ > 0 and ω, there exists a m0 such
that

max
x∈M

Hm(x, t) ≤ 1 + ϵ

for any m ≥ m0 and t ∈ [αm0 , ω]. Also, observe that the elementary symmetric poly-
nomials of principal curvatures of the indexed hypersurfaces scale as (Sk)m = L−k

m Sk
so

(Sk)m ≥ −ηHk
m − L−k

m Cη,k

≥ −η(1 + ϵ)k − L−k
m Cη,k

which can be made arbitrarily small in the limit m→ ∞. The curvature bound implies
analogous bounds on the second fundamental form as well as its covariant derivatives.
Invoking the Arzela-Ascoli theorem there exists a subsequence of Xk converging uni-
formly on compact subsets of Rn+1×R to a limiting solution X∞ of the mean curvature
flow. This proves the asymptotic convexity of the flow in the following sense.

Theorem 2.3.2. Let X : M × [0, T ) → Rn+1 be a smooth maximal solution of the
mean curvature flow with X(·, 0) = M0 compact and of positive mean curvature.
Further, assume that the flow develops a singularity of type II. Then there exists
a sequence of rescaled flow Xk(·, t) converging smoothly on every compact set to
a mean curvature flow X∞(·, t) which is defined for t ∈ (−∞,∞). Also, the limit
hypersurface X∞ is convex (not necessarily uniformly convex) for each t ∈ (−∞,∞)
and satisfies 0 < H∞ ≤ 1 everywhere with equality at least at one point.
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3 Noncollapsing

Noncollapsing in mean curvature flow is a powerful result that gives a geometric idea
about the structure of singularities. It can be used to rule out certain singularity profiles
for mean convex mean curvature flow.

3.1 Inscribed curvature

LetM ⊂ Rn+1 be a smooth hypersurface which is the boundary of an open set Ω ⊂ Rn+1.
For x ∈ M, we want to find the radius of the largest inscribed sphere in M touching
it at x. For any y ∈ M\{x}, the radius of the sphere passing through x and y and
touching M at x is given by

r(x, y) =
||x− y||2

2 ⟨x− y, ν(x)⟩
(3.1.1)

where ν(x) is the outward unit normal vector of M at x. The inverse of the radius is
the extrinsic ball curvature k : M×M\{(x, x) : x ∈ M} → R defined by

k(x, y) =
2 ⟨x− y, ν(x)⟩

||x− y||2
. (3.1.2)

Now for each point x ∈ M, we can get the radius of the largest inscribed sphere touching
M at x which we call the inradius function r : M → (0,∞] given by

r(x) = inf
y∈M\{x}

r(x, y). (3.1.3)

Similarly, the inscribed curvature k : M → [0,∞) is obtained by the reciprocal of the
inradius, so

k(x) =
1

r(x)
= sup

y∈M\{x}
k(x, y). (3.1.4)

Definition 3.1.1. Let M be a mean convex hypersurface bounding an open set
Ω ⊂ Rn+1, so ∂Ω = M. We say that M is α-noncollapsed if for every x ∈ M
there exists an open ball B of radius α

H(x) touching M at x and contained entirely
in Ω. In terms of the inscribed curvature, this is same as the inequality

k(x) ≤ 1

α
H(x) for all x ∈ M. (3.1.5)
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Figure 3.1: Inscribed sphere of maximum radius

We will prove in the following section that noncollapsing is preserved under mean cur-
vature flow.

3.2 Differential inequality for inscribed curvature

Following [ACGL22, Bre15] the time evolution equation of inscribed curvature satisfies
an inequality which implies noncollapsing. The main difficulty of the proof lies in ma-
nipulating the complicated time derivative of k to get the useful gradient terms with
signs.

Theorem 3.2.1. Let X : Mn × [0, T ) → Rn+1 be a smooth solution of the mean
curvature flow with M0 properly embedded. Then

∂k

∂t
≤ ∆k + |A|2k − 2

∑
κi<k

(∇ik)
2

k − κi
(3.2.1)

where the inequality holds in the viscosity sense.

Proof. For any given point (x0, t0) ∈ M× [0, T ), either of the two cases occur

1. k(x0, t0) = limy→x0 k(x0, y, t0), or

2. k(x0, t0) = k(x0, y0, t0) for some y0 ∈ Mt0\{x0}.

We will be concentrating only on the second case which happens on an open subset
of spacetime, where the supremum is achieved from a sphere touching the hypersurface
at two separate points. The first case occurs on a set with measure zero and is covered
in Proposition 12.8 in [ACGL22].
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Let U be an open neighborhood of x0 and ψ : U×(t0−α, t0] → R be a smooth function
such that ψ(x0, t0) = k(x0, t0) and ψ(x, t) ≥ k(x, t) for all (x, t) ∈ U × (t0 − α, t0]. We
want to prove

∂ψ

∂t
≤ ∆ψ + |A|2ψ − 2

n∑
i=1

(∇iψ)
2

ψ − κi
. (3.2.2)

Define

Z(x, y, t) =
1

2
ψ(x, t)|X(x, t)−X(y, t)|2 − ⟨X(x, t)−X(y, t), ν(x, t)⟩ (3.2.3)

which can be further simplified to

Z(x, y, t) =
|X(x, t)−X(y, t)|2

2
(ψ(x, t)− k(x, t))

for all x ̸= y. Observe that Z(x0, y0, t0) = 0 and Z(x, y, t) ≥ 0 for all (x, y, t) ∈
U ×M × (t0 − α, t0] from the hypothesis on ψ.
The space derivatives in local coordinates are

∂Z

∂xi
=

1

2

∂ψ

∂xi
(x, t)|X(x, t)−X(y, t)|2 + ψ(x, t)

〈
X(x, t)−X(y, t),

∂X

∂xi
(x, t)

〉
− hki (x, t)

〈
X(x, t)−X(y, t),

∂X

∂xk
(x, t)

〉
(3.2.4)

and

∂Z

∂yi
= −ψ(x, t)

〈
∂X

∂yi
(y, t), X(x, t)−X(y, t)

〉
+

〈
∂X

∂yi
(y, t), ν(x, t)

〉
(3.2.5)

Choose normal coordinates around x0 such that hij(x0, t0) is diagonal. Then Eq. (3.2.4)
at the minima (x0, y0) gives

〈
η,
∂X

∂xi
(x0, t0)

〉
= −1

2

1

ψ(x0, t0)− κi(x0, t0)

∂ψ

∂xi
(x0, t0)|X(x0, t0)−X(y0, t0)| (3.2.6)

where η = X(x0,t0)−X(y0,t0)
|X(x0,t0)−X(y0,t0)| . The tangent space at y0 can be obtained by reflection

across the hyperplane with normal η. In particular,

ν(y0, t0) = ν(x0, t0)− 2η ⟨ν(x0, t0), η⟩
= ν(x0, t0)− ψ(x0, t0)(X(x0, t0)−X(y0, t0)). (3.2.7)

Now we choose normal coordinates around y0, such that the reflection of ∂X
∂xi

across η is
∂X
∂yi

, so

∂X

∂yi
=
∂X

∂xi
− 2η

〈
∂X

∂xi
, η

〉
(3.2.8)
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Also, 〈
∂X

∂yi
(y0, t0),

∂X

∂xi
(x0, t0)

〉
= 1− 2η

〈
∂X

∂xi
(x0, t0), η

〉2

(3.2.9)

Further, calculating the double space derivatives,

∂2Z

∂x2i
(x, y, t) =

1

2

∂2ψ

∂x2i
|X(x, t)−X(y, t)|2 + 2

∂ψ

∂xi

〈
X(x, t)−X(y, t),

∂X

∂xi

〉
+ ψ

〈
∂X

∂xi
,
∂X

∂xi

〉
+ ψ

〈
X(x, t)−X(y, t),

∂2X

∂x2i

〉
− ∂hki
∂xi

〈
X(x, t)−X(y, t),

∂X

∂xk

〉
− hki

〈
∂X

∂xi
,
∂X

∂xk

〉
− hki

〈
X(x, t)−X(y, t),

∂2X

∂xi∂xk

〉
. (3.2.10)

Recall we had chosen normal coordinates at x0 such that the matrix hij(x0, t0) is diagonal
so

∂2X

∂x2i
= Γk

ii

∂X

∂xk
− hiiν = −κiν.

Adding the Eq. (3.2.10) from i = 1 to n, and evaluating it at (x0, y0, t0),

n∑
i=1

∂2Z

∂x2i
(x0, y0, t0) =

1

2
∆ψ|X(x0, t0)−X(y0, t0)|2 − 2

n∑
i=1

∂ψ

∂xi
(x0, t0)

〈
X(x0, t0)−X(y0, t0),

∂X

∂xi

〉
+ nψ + ψ ⟨X(x0, t0)−X(y0, t0),−H(x0, t0)ν(x0, t0)⟩

−
n∑

i=1

∂H

∂xi
(x0, t0)

〈
X(x0, t0)−X(y0, t0),

∂X

∂xi

〉
−H(x0, t0)

+ |A(x0, t0)|2 ⟨X(x0, t0)−X(y0, t0), ν(x0, t0)⟩ (3.2.11)

where we used the Codazzi equation
∑
∂ih

k
i = ∂kH for normal coordinates and the

mean curvature vector equation ∆X = −Hν. Using Eq. (3.2.6) this can be written as,

n∑
i=1

∂2Z

∂x2i
(x0, y0, t0) =

1

2

(
∆ψ(x0, t0) + |A(x0, t0)|2ψ(x0, t0)

−
n∑

i=1

2

ψ(x0, t0)− κi(x0, t0)

(
∂ψ

∂xi
(x0, t0)

)2)
|X(x0, t0)−X(y0, t0)|2

−
n∑

i=1

∂H

∂xi
(x0, t0)

〈
X(x0, t0)−X(y0, t0),

∂X

∂xi
(x0, t0)

〉
−H(x0, t0)ψ(x0, t0) ⟨X(x0, t0)−X(y0, t0), ν(x0, t0)⟩
+ nψ(x0, t0)−H(x0, t0). (3.2.12)
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Now the mixed derivatives are given by

∂2Z

∂xi∂yi
(x, y, t) = − ∂ψ

∂xi
(x, t)

〈
∂X

∂yi
(y, t), X(x, t)−X(y, t)

〉
− ψ(x, t)

〈
∂X

∂yi
(y, t),

∂X

∂xi
(x, t)

〉
+

〈
∂X

∂yi
(y, t),

∂ν

∂xi
(x, t)

〉
.

Evaluating this at (x0, y0, t0) and using Eq. (3.2.6) and Eq. (3.2.9), we get

∂2Z

∂xi∂yi
(x0, y0, t0) = − ∂ψ

∂xi
(x0, t0)

〈
∂X

∂yi
(y0, t0), X(x0, t0)−X(y0, t0)

〉
− (ψ(x0, t0)− κi(x0, t0))

〈
∂X

∂yi
(y0, t0),

∂X

∂xi
(x0, t0)

〉
=
∂ψ

∂xi
(x0, t0)

〈
X(x0, t0)−X(y0, t0),

∂X

∂xi
(x0, t0)

〉
− (ψ(x0, t0)− κi(x0, t0))

(
1− 2η

〈
∂X

∂xi
(x0, t0)

〉2
)

= −(ψ(x0, t0)− κi(x0, t0)).

For the second order y derivative,

∂2Z

∂y2i
(x, y, t) = −ψ(x, t)

〈
∂2X

∂y2i
(y, t), X(x, t)−X(y, t)

〉
− ψ(x, t)

〈
∂X

∂yi
(y, t),−∂X

∂yi
(y, t)

〉
+

〈
∂2X

∂y2i
(y, t), ν(x, t)

〉

so from Eq. (3.2.7) at (x0, y0, t0),

∂Z

∂y2i
(x0, y0, t0) = ψ(x0, t0)κi(y0, t0) ⟨X(x0, t0)−X(y0, t0), ν(y0, t0)⟩+ ψ(x0, t0)

− κi(y0, t0) ⟨ν(y0, t0), ν(x0, t0)⟩
= ψ(x0, t0)κi(y0, t0)

(
⟨X(x0, t0)−X(y0, t0), ν(x0, t0)⟩ − ψ(x0, t0)|X(x0, t0)−X(y0, t0)|2

)
+ ψ(x0, t0)− κi(y0, t0)(1− ψ(x0, t0) ⟨X(x0, t0)−X(y0, t0), ν(x0, t0)⟩)

= ψ(x0, t0)− κi(y0, t0). (3.2.13)

Now the time derivative is,
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CHAPTER 3. NONCOLLAPSING

∂Z

∂t
(x0, y0, t0) =

1

2

∂ψ

∂t
(x0, t0)|X(x0, t0)−X(y0, t0)|2

+ ψ(x0, t0) ⟨−H(x0, t0)ν(x0, t0) +H(y0, t0)ν(y0, t0), X(x0, t0)−X(y0, t0)⟩
− ⟨−H(x0, t0)ν(x0, t0) +H(y0, t0)ν(y0, t0), ν(x0, t0)⟩

−
n∑

i=1

∂H

∂xi
(x0, t0)

〈
X(x0, t0)−X(y0, t0),

∂X

∂xi
(x0, t0)

〉
=

1

2

∂ψ

∂t
(x0, t0)|X(x0, t0)−X(y0, t0)|2

−
n∑

i=1

∂H

∂xi
(x0, t0)

〈
X(x0, t0)−X(y0, t0),

∂X

∂xi
(x0, t0)

〉
−H(x0, t0)ψ(x0, t0) ⟨X(x0, t0)−X(y0, t0), ν(x0, t0)⟩+H(x0, t)−H(y0, t0)

where ν(x0, t0) − ψ(x0, t0)(X(x0, t0) − X(y0, t0)) = ν(y0, t0) was used for last equality.
Putting together we get the elliptic term,

∂Z

∂t
(x0, y0, t0)−

n∑
i=1

(
∂2Z

∂x2i
+ 2

∂2Z

∂xi∂yi
+
∂2Z

∂y2i

)
(x0, y0, t0)

=
1

2

(
∂ψ

∂t
(x0, t0)−∆ψ(x0, t0)− |A(x0, t0)|2ψ(x0, t0)

+
n∑

i=1

2

ψ(x0, t0)− κi(x0, t0)

(
∂ψ

∂xi
(x0, t0)

)2)
|X(x0, t0)−X(y0, t0)|2.

As (x0, y0, t0) is a local minimum of Z, the left-hand side of the previous equation is
negative from which the inequality Eq. (3.2.2) follows.

Remark. Notice that the inequality is in one variable however, the proof goes
through the maximum principle on a two-variable function. There are a lot of
applications of such two-point functions considered in [Bre14, And14].

Corollary (Noncollapsing). Let X : Mn × [0, T ) → Rn+1 be a smooth embedded
solution of the mean curvature with X(·, 0) = M0 compact, mean-convex and α-
noncollapsed. Then X(·, t) = Mt is α-noncollapsed for all t ∈ [0, T ).

Proof. From Eq. (3.2.1), it follows that

∂k

∂t
≤ ∆k + |A|2k.
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3.2. DIFFERENTIAL INEQUALITY FOR INSCRIBED CURVATURE

Recall that the mean curvature H, satisfies Eq. (1.3.4) so the time derivative of the
quotient k

H satisfies

∂

∂t

(
k

H

)
≤ (∆k + |A|2k)H − (∆H + |A|2H)k

H2

= ∆

(
k

H

)
+

2

H

〈
∇
(
k

H

)
,∇H

〉
.

Now maximum principle (for viscosity solutions) yields αk ≤ H for all t ∈ [0, T ).
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